mirror of https://github.com/openssl/openssl.git
				
				
				
			
		
			
				
	
	
		
			222 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 2023-2024 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the Apache License 2.0 (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <openssl/core_names.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/err.h>
 | |
| 
 | |
| /*
 | |
|  * This is a demonstration of key exchange using ECDH.
 | |
|  *
 | |
|  * EC key exchange requires 2 parties (peers) to first agree on shared group
 | |
|  * parameters (the EC curve name). Each peer then generates a public/private
 | |
|  * key pair using the shared curve name. Each peer then gives their public key
 | |
|  * to the other peer. A peer can then derive the same shared secret using their
 | |
|  * private key and the other peers public key.
 | |
|  */
 | |
| 
 | |
| /* Object used to store information for a single Peer */
 | |
| typedef struct peer_data_st {
 | |
|     const char *name;               /* name of peer */
 | |
|     const char *curvename;          /* The shared curve name */
 | |
|     EVP_PKEY *priv;                 /* private keypair */
 | |
|     EVP_PKEY *pub;                  /* public key to send to other peer */
 | |
|     unsigned char *secret;          /* allocated shared secret buffer */
 | |
|     size_t secretlen;
 | |
| } PEER_DATA;
 | |
| 
 | |
| /*
 | |
|  * The public key needs to be given to the other peer
 | |
|  * The following code extracts the public key data from the private key
 | |
|  * and then builds an EVP_KEY public key.
 | |
|  */
 | |
| static int get_peer_public_key(PEER_DATA *peer, OSSL_LIB_CTX *libctx)
 | |
| {
 | |
|     int ret = 0;
 | |
|     EVP_PKEY_CTX *ctx;
 | |
|     OSSL_PARAM params[3];
 | |
|     unsigned char pubkeydata[256];
 | |
|     size_t pubkeylen;
 | |
| 
 | |
|     /* Get the EC encoded public key data from the peers private key */
 | |
|     if (!EVP_PKEY_get_octet_string_param(peer->priv, OSSL_PKEY_PARAM_PUB_KEY,
 | |
|                                          pubkeydata, sizeof(pubkeydata),
 | |
|                                          &pubkeylen))
 | |
|         return 0;
 | |
| 
 | |
|     /* Create a EC public key from the public key data */
 | |
|     ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
 | |
|     if (ctx == NULL)
 | |
|         return 0;
 | |
|     params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
 | |
|                                                  (char *)peer->curvename, 0);
 | |
|     params[1] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
 | |
|                                                   pubkeydata, pubkeylen);
 | |
|     params[2] = OSSL_PARAM_construct_end();
 | |
|     ret = EVP_PKEY_fromdata_init(ctx) > 0
 | |
|           && (EVP_PKEY_fromdata(ctx, &peer->pub, EVP_PKEY_PUBLIC_KEY,
 | |
|                                 params) > 0);
 | |
|     EVP_PKEY_CTX_free(ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int create_peer(PEER_DATA *peer, OSSL_LIB_CTX *libctx)
 | |
| {
 | |
|     int ret = 0;
 | |
|     EVP_PKEY_CTX *ctx = NULL;
 | |
|     OSSL_PARAM params[2];
 | |
| 
 | |
|     params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
 | |
|                                                  (char *)peer->curvename, 0);
 | |
|     params[1] = OSSL_PARAM_construct_end();
 | |
| 
 | |
|     ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
 | |
|     if (ctx == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (EVP_PKEY_keygen_init(ctx) <= 0
 | |
|             || !EVP_PKEY_CTX_set_params(ctx, params)
 | |
|             || EVP_PKEY_generate(ctx, &peer->priv) <= 0
 | |
|             || !get_peer_public_key(peer, libctx)) {
 | |
|         EVP_PKEY_free(peer->priv);
 | |
|         peer->priv = NULL;
 | |
|         goto err;
 | |
|     }
 | |
|     ret = 1;
 | |
| err:
 | |
|     EVP_PKEY_CTX_free(ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void destroy_peer(PEER_DATA *peer)
 | |
| {
 | |
|     EVP_PKEY_free(peer->priv);
 | |
|     EVP_PKEY_free(peer->pub);
 | |
| }
 | |
| 
 | |
| static int generate_secret(PEER_DATA *peerA, EVP_PKEY *peerBpub,
 | |
|                            OSSL_LIB_CTX *libctx)
 | |
| {
 | |
|     unsigned char *secret = NULL;
 | |
|     size_t secretlen = 0;
 | |
|     EVP_PKEY_CTX *derivectx;
 | |
| 
 | |
|     /* Create an EVP_PKEY_CTX that contains peerA's private key */
 | |
|     derivectx = EVP_PKEY_CTX_new_from_pkey(libctx, peerA->priv, NULL);
 | |
|     if (derivectx == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (EVP_PKEY_derive_init(derivectx) <= 0)
 | |
|         goto cleanup;
 | |
|     /* Set up peerB's public key */
 | |
|     if (EVP_PKEY_derive_set_peer(derivectx, peerBpub) <= 0)
 | |
|         goto cleanup;
 | |
| 
 | |
|     /*
 | |
|      * For backwards compatibility purposes the OpenSSL ECDH provider supports
 | |
|      * optionally using a X963KDF to expand the secret data. This can be done
 | |
|      * with code similar to the following.
 | |
|      *
 | |
|      *   OSSL_PARAM params[5];
 | |
|      *   size_t outlen = 128;
 | |
|      *   unsigned char ukm[] = { 1, 2, 3, 4 };
 | |
|      *   params[0] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_TYPE,
 | |
|      *                                                "X963KDF", 0);
 | |
|      *   params[1] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_DIGEST,
 | |
|      *                                                "SHA256", 0);
 | |
|      *   params[2] = OSSL_PARAM_construct_size_t(OSSL_EXCHANGE_PARAM_KDF_OUTLEN,
 | |
|      *                                           &outlen);
 | |
|      *   params[3] = OSSL_PARAM_construct_octet_string(OSSL_EXCHANGE_PARAM_KDF_UKM,
 | |
|      *                                                 ukm, sizeof(ukm));
 | |
|      *   params[4] = OSSL_PARAM_construct_end();
 | |
|      *   if (!EVP_PKEY_CTX_set_params(derivectx, params))
 | |
|      *       goto cleanup;
 | |
|      *
 | |
|      * Note: After the secret is generated below, the peer could alternatively
 | |
|      * pass the secret to a KDF to derive additional key data from the secret.
 | |
|      * See demos/kdf/hkdf.c for an example (where ikm is the secret key)
 | |
|      */
 | |
| 
 | |
|     /* Calculate the size of the secret and allocate space */
 | |
|     if (EVP_PKEY_derive(derivectx, NULL, &secretlen) <= 0)
 | |
|         goto cleanup;
 | |
|     secret = (unsigned char *)OPENSSL_malloc(secretlen);
 | |
|     if (secret == NULL)
 | |
|         goto cleanup;
 | |
| 
 | |
|     /*
 | |
|      * Derive the shared secret. In this example 32 bytes are generated.
 | |
|      * For EC curves the secret size is related to the degree of the curve
 | |
|      * which is 256 bits for P-256.
 | |
|      */
 | |
|     if (EVP_PKEY_derive(derivectx, secret, &secretlen) <= 0)
 | |
|         goto cleanup;
 | |
|     peerA->secret = secret;
 | |
|     peerA->secretlen = secretlen;
 | |
| 
 | |
|     printf("Shared secret (%s):\n", peerA->name);
 | |
|     BIO_dump_indent_fp(stdout, peerA->secret, peerA->secretlen, 2);
 | |
|     putchar('\n');
 | |
| 
 | |
|     return 1;
 | |
| cleanup:
 | |
|     OPENSSL_free(secret);
 | |
|     EVP_PKEY_CTX_free(derivectx);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int main(void)
 | |
| {
 | |
|     int ret = EXIT_FAILURE;
 | |
|     /* Initialise the 2 peers that will share a secret */
 | |
|     PEER_DATA peer1 = {"peer 1", "P-256"};
 | |
|     PEER_DATA peer2 = {"peer 2", "P-256"};
 | |
|     /*
 | |
|      * Setting libctx to NULL uses the default library context
 | |
|      * Use OSSL_LIB_CTX_new() to create a non default library context
 | |
|      */
 | |
|     OSSL_LIB_CTX *libctx = NULL;
 | |
| 
 | |
|     /* Each peer creates a (Ephemeral) keypair */
 | |
|     if (!create_peer(&peer1, libctx)
 | |
|             || !create_peer(&peer2, libctx)) {
 | |
|         fprintf(stderr, "Create peer failed\n");
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Each peer uses its private key and the other peers public key to
 | |
|      * derive a shared secret
 | |
|      */
 | |
|     if (!generate_secret(&peer1, peer2.pub, libctx)
 | |
|             || !generate_secret(&peer2, peer1.pub, libctx)) {
 | |
|         fprintf(stderr, "Generate secrets failed\n");
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /* For illustrative purposes demonstrate that the derived secrets are equal */
 | |
|     if (peer1.secretlen != peer2.secretlen
 | |
|             || CRYPTO_memcmp(peer1.secret, peer2.secret, peer1.secretlen) != 0) {
 | |
|         fprintf(stderr, "Derived secrets do not match\n");
 | |
|         goto cleanup;
 | |
|     } else {
 | |
|         fprintf(stdout, "Derived secrets match\n");
 | |
|     }
 | |
| 
 | |
|     ret = EXIT_SUCCESS;
 | |
| cleanup:
 | |
|     if (ret != EXIT_SUCCESS)
 | |
|         ERR_print_errors_fp(stderr);
 | |
|     destroy_peer(&peer2);
 | |
|     destroy_peer(&peer1);
 | |
|     return ret;
 | |
| }
 |