MNN/source/backend/cpu/CPUSoftmax.cpp

323 lines
11 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUSoftmax.cpp
// MNN
//
// Created by MNN on 2018/07/16.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUSoftmax.hpp"
2019-04-17 10:49:11 +08:00
#include <math.h>
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/compute/CommonOptFunction.h"
#include "core/Concurrency.h"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
#include <arm_neon.h>
#endif
namespace MNN {
int CPUSoftmax::_softmax1(const float *srcData, float *dstData, int outside, int channel, int threadNum) {
2020-02-26 09:57:17 +08:00
// Max and sub
MNN_CONCURRENCY_BEGIN(tId, threadNum)
{
const float *srcY = srcData + tId * channel;
float *dstY = dstData + tId * channel;
for (int y = (int)tId; y < outside; y += threadNum, srcY += channel * threadNum, dstY += channel * threadNum) {
float maxValue = srcY[0];
{
int c = 1;
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
#if !(defined(__ARM_FEATURE_FMA) && defined(__aarch64__))
#define vmaxvq_f32(v) \
({ \
float __m = v[0]; \
for (int i = 1; i < 4; i++) { \
if (v[i] > __m) \
__m = v[i]; \
} \
__m; \
})
#endif
if (c + 3 < channel) {
float32x4_t maxx4 = vld1q_f32(srcY + c);
c += 4;
for (; c + 3 < channel; c += 4) {
maxx4 = vmaxq_f32(maxx4, vld1q_f32(srcY + c));
}
float value = vmaxvq_f32(maxx4);
if (value > maxValue)
maxValue = value;
2019-04-17 10:49:11 +08:00
}
#endif
for (; c < channel; ++c) {
float value = srcY[c];
if (value > maxValue)
maxValue = value;
}
2019-04-17 10:49:11 +08:00
}
for (int c = 0; c < channel; ++c) {
dstY[c] = -srcY[c] + maxValue;
}
2020-02-26 09:57:17 +08:00
}
}
MNN_CONCURRENCY_END();
//Exp
auto schedule = ((CPUBackend*)backend())->multiThreadDivide(channel * outside);
int sizeDivide = schedule.first;
int scheduleNumber = schedule.second;
MNN_CONCURRENCY_BEGIN(tId, scheduleNumber) {
int start = sizeDivide * (int)tId;
int realSize = sizeDivide;
if (tId == scheduleNumber -1 ) {
realSize = channel * outside - start;
}
if (realSize > 0) {
MNNExp(dstData + start, dstData + start, realSize);
}
}
MNN_CONCURRENCY_END();
2020-02-26 09:57:17 +08:00
// Sum and div
MNN_CONCURRENCY_BEGIN(tId, threadNum);
{
float *dstY = dstData + tId * channel;
for (int y = (int)tId; y < outside; y += threadNum, dstY += channel * threadNum) {
// sum
float sumValue = 0;
2019-04-17 10:49:11 +08:00
for (int c = 0; c < channel; ++c) {
sumValue += dstY[c];
2019-04-17 10:49:11 +08:00
}
// div
{
int c = 0;
#ifdef MNN_USE_NEON
float div = 1.f / sumValue;
for (; c + 3 < channel; c += 4) {
vst1q_f32(dstY + c, vmulq_n_f32(vld1q_f32(dstY + c), div));
}
2019-04-17 10:49:11 +08:00
#endif
for (; c < channel; ++c) {
dstY[c] /= sumValue;
}
2019-04-17 10:49:11 +08:00
}
}
}
MNN_CONCURRENCY_END();
2019-04-17 10:49:11 +08:00
return 0;
}
int CPUSoftmax::_softmaxCommon(const float *srcData, float *dstData, int inside, int outside, int channel,
float *maxValue, float *sumValue, int threadNum) {
2019-04-17 10:49:11 +08:00
if (inside == 1)
return _softmax1(srcData, dstData, outside, channel, threadNum);
const int stepY = inside * channel;
MNN_CONCURRENCY_BEGIN(tId, threadNum);
{
const float *srcY = srcData + tId * stepY;
float *dstY = dstData + tId * stepY;
float *maxValueSub = maxValue + tId * inside;
for (int y = (int)tId; y < outside; y += threadNum, srcY += stepY * threadNum, dstY += stepY * threadNum) {
memcpy(maxValueSub, srcY, sizeof(float) * inside);
const float *src = srcY + inside;
for (int c = 1; c < channel; ++c, src += inside) {
for (int x = 0; x < inside; ++x) {
if (src[x] > maxValueSub[x])
maxValueSub[x] = src[x];
}
2019-04-17 10:49:11 +08:00
}
src = srcY;
float *dst = dstY;
for (int c = 0; c < channel; ++c, src += inside, dst += inside) {
for (int x = 0; x < inside; ++x) {
dst[x] = -src[x] + maxValueSub[x];
}
2019-04-17 10:49:11 +08:00
}
2020-02-26 09:57:17 +08:00
}
}
MNN_CONCURRENCY_END();
2020-02-26 09:57:17 +08:00
auto totalSize = channel * inside * outside;
//Exp
auto schedule = ((CPUBackend*)backend())->multiThreadDivide(totalSize);
int sizeDivide = schedule.first;
int scheduleNumber = schedule.second;
MNN_CONCURRENCY_BEGIN(tId, scheduleNumber) {
int start = sizeDivide * (int)tId;
int realSize = sizeDivide;
if (tId == scheduleNumber -1 ) {
realSize = totalSize - start;
}
if (realSize > 0) {
MNNExp(dstData + start, dstData + start, realSize);
}
}
MNN_CONCURRENCY_END();
MNN_CONCURRENCY_BEGIN(tId, threadNum);
{
const float *srcY = srcData + tId * stepY;
float *dstY = dstData + tId * stepY;
float *sumValueSub = sumValue + tId * inside;
for (int y = (int)tId; y < outside; y += threadNum, srcY += stepY * threadNum, dstY += stepY * threadNum) {
memset(sumValueSub, 0, sizeof(float) * inside);
float *dst = dstY;
for (int c = 0; c < channel; ++c, dst += inside) {
for (int x = 0; x < inside; ++x) {
sumValueSub[x] += dst[x];
}
}
dst = dstY;
for (int c = 0; c < channel; ++c, dst += inside) {
for (int x = 0; x < inside; ++x) {
dst[x] /= sumValueSub[x];
}
2019-04-17 10:49:11 +08:00
}
}
}
MNN_CONCURRENCY_END();
2019-04-17 10:49:11 +08:00
return 0;
}
ErrorCode CPUSoftmax::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
const int dimensions = input->buffer().dimensions;
2020-11-05 16:41:56 +08:00
int axis = mAxis;
if (axis < 0) {
axis += dimensions;
}
const auto layout = TensorUtils::getDescribe(input)->dimensionFormat;
mNeedUnpackC4 = layout == MNN_DATA_FORMAT_NC4HW4;
if (mNeedUnpackC4) {
int totalSize = 1;
2020-02-26 09:57:17 +08:00
for (int i = 1; i < dimensions; ++i) {
totalSize *= input->length(i);
}
2020-02-26 09:57:17 +08:00
mStorage.buffer().dim[0].extent = input->length(0);
mStorage.buffer().dim[1].extent = totalSize;
TensorUtils::getDescribe(&mStorage)->dimensionFormat = MNN_DATA_FORMAT_NHWC;
mStorage.buffer().dimensions = 2;
mStorage.buffer().type = input->getType();
backend()->onAcquireBuffer(&mStorage, Backend::DYNAMIC);
}
int inside = 1;
int dims = input->buffer().dimensions;
2020-11-05 16:41:56 +08:00
for (int i = axis + 1; i < dims; ++i) {
inside *= input->length(i);
}
if (inside != 1) { // not run _softmax1, we need maxValue Tensor and sumValue Tensor.
int threadNum = ((CPUBackend *)backend())->threadNumber();
mMaxValue.buffer().dim[0].extent = inside * threadNum;
mMaxValue.buffer().dimensions = 1;
mMaxValue.setType(DataType_DT_FLOAT);
backend()->onAcquireBuffer(&mMaxValue, Backend::DYNAMIC);
mSumValue.buffer().dim[0].extent = inside * threadNum;
mSumValue.buffer().dimensions = 1;
mSumValue.setType(DataType_DT_FLOAT);
backend()->onAcquireBuffer(&mSumValue, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mMaxValue, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mSumValue, Backend::DYNAMIC);
}
if (mNeedUnpackC4) {
backend()->onReleaseBuffer(&mStorage, Backend::DYNAMIC);
2019-04-17 10:49:11 +08:00
}
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
ErrorCode CPUSoftmax::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto inputTensor = inputs[0];
auto outputTensor = outputs[0];
const auto inputDataPtr = inputTensor->host<float>();
auto outputDataPtr = outputTensor->host<float>();
const int batch = inputTensor->batch();
const auto dims = inputTensor->buffer().dimensions;
2020-11-05 16:41:56 +08:00
int axis = mAxis;
if (axis < 0) {
axis += inputTensor->dimensions();
}
float *tempData = nullptr;
if (mNeedUnpackC4) {
tempData = mStorage.host<float>();
2019-04-17 10:49:11 +08:00
}
2019-04-17 10:49:11 +08:00
int areaInput = 1;
for (int i = 2; i < dims; ++i) {
areaInput *= inputTensor->length(i);
2019-04-17 10:49:11 +08:00
}
int inside = 1;
int outside = 1;
int channel = 1;
2020-11-05 16:41:56 +08:00
for (int i = 0; i < axis; ++i) {
outside *= inputTensor->length(i);
2019-04-17 10:49:11 +08:00
}
2020-11-05 16:41:56 +08:00
channel = inputTensor->length(axis);
for (int i = axis + 1; i < dims; ++i) {
inside *= inputTensor->length(i);
2019-04-17 10:49:11 +08:00
}
int threadNum = ((CPUBackend *)backend())->threadNumber();
2020-02-26 09:57:17 +08:00
if (!mNeedUnpackC4) {
_softmaxCommon(inputDataPtr, outputDataPtr, inside, outside, channel, mMaxValue.host<float>(),
mSumValue.host<float>(), threadNum);
return NO_ERROR;
}
auto outputSize = outputTensor->elementSize();
int batchSize = outputSize / batch;
auto functions = static_cast<CPUBackend*>(backend())->functions();
for (int batchIndex = 0; batchIndex < batch; ++batchIndex) {
auto inputData = inputDataPtr + batchIndex * batchSize;
functions->MNNUnpackCUnit(outputDataPtr + batchIndex * mStorage.length(1), inputData, areaInput, inputTensor->channel());
2020-02-26 09:57:17 +08:00
}
_softmaxCommon(outputDataPtr, tempData, inside, outside, channel, mMaxValue.host<float>(), mSumValue.host<float>(), threadNum);
for (int batchIndex = 0; batchIndex < batch; ++batchIndex) {
auto outputData = outputDataPtr + batchIndex * batchSize;
2020-02-26 09:57:17 +08:00
auto tempPtr = tempData + batchIndex * mStorage.length(1);
functions->MNNPackCUnit(outputData, tempPtr, areaInput, outputTensor->channel());
2019-04-17 10:49:11 +08:00
}
return NO_ERROR;
}
CPUSoftmax::CPUSoftmax(Backend *b, int axis) : MNN::Execution(b), mAxis(axis), mStorage(2), mNeedUnpackC4(false) {
2019-04-17 10:49:11 +08:00
// nothing to do
}
Execution* CPUSoftmax::create(const MNN::Op *op, Backend *backend) {
auto axis = op->main_as_Axis()->axis();
return new CPUSoftmax(backend, axis);
}
2019-04-17 10:49:11 +08:00
class CPUSoftmaxCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
auto axis = op->main_as_Axis()->axis();
return CPUSoftmax::create(op, backend);
2019-04-17 10:49:11 +08:00
}
};
REGISTER_CPU_OP_CREATOR(CPUSoftmaxCreator, OpType_Softmax);
} // namespace MNN