MNN/source/shape/ShapeStridedSlice.cpp

228 lines
8.8 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeStridedSlice.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <algorithm>
#include <array>
2020-11-05 16:41:56 +08:00
#include "shape/SizeComputer.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
class StridedSliceComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
MNN_ASSERT(4 == inputs.size());
MNN_ASSERT(1 == outputs.size());
2019-12-27 22:16:57 +08:00
2019-04-17 10:49:11 +08:00
Tensor *input = inputs[0];
2021-02-07 10:45:07 +08:00
const int inputDim = input->buffer().dimensions;
if (inputDim <= 0 || inputDim > MNN_MAX_TENSOR_DIM) {
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
return false;
}
2019-04-17 10:49:11 +08:00
auto parameter = op->main_as_StridedSliceParam();
2021-02-07 10:45:07 +08:00
int32_t beginMask = parameter->beginMask();
int32_t endMask = parameter->endMask();
int32_t shrinkAxisMask = parameter->shrinkAxisMask();
int32_t ellipsisMask = parameter->ellipsisMask();
int32_t newAxisMask = parameter->newAxisMask();
if (ellipsisMask && (ellipsisMask & (ellipsisMask - 1))) {
MNN_ERROR("only one non-zero bit is allowed in ellipsisMask\n");
return false;
}
2019-04-17 10:49:11 +08:00
Tensor *begin = inputs[1];
Tensor *end = inputs[2];
Tensor *strided = inputs[3];
2021-02-07 10:45:07 +08:00
auto output = outputs[0];
2019-04-17 10:49:11 +08:00
MNN_ASSERT(begin->buffer().dimensions == end->buffer().dimensions &&
begin->buffer().dimensions == strided->buffer().dimensions);
2021-02-07 10:45:07 +08:00
int32_t inputShape[MNN_MAX_TENSOR_DIM] = { 0 };
int32_t begins[MNN_MAX_TENSOR_DIM] = { 0 };
int32_t ends[MNN_MAX_TENSOR_DIM] = { 0 };
int32_t strides[MNN_MAX_TENSOR_DIM] = { 0 };
int32_t beginMasks[MNN_MAX_TENSOR_DIM] = { 0 };
int32_t endMasks[MNN_MAX_TENSOR_DIM] = { 0 };
int32_t shrinkAxisMasks[MNN_MAX_TENSOR_DIM] = { 0 };
int32_t newAxisMasks[MNN_MAX_TENSOR_DIM] = { 0 };
int strideSize = begin->length(0);
for (int i = 0; i < inputDim; i++) {
inputShape[i] = input->length(i);
}
for (int i = 0; i < strideSize; i++) {
beginMasks[i] = beginMask & (1 << i);
}
for (int i = 0; i < strideSize; i++) {
endMasks[i] = endMask & (1 << i);
}
for (int i = 0; i < strideSize; i++) {
shrinkAxisMasks[i] = shrinkAxisMask & (1 << i);
}
for (int i = 0; i < strideSize; i++) {
newAxisMasks[i] = newAxisMask & (1 << i);
2019-04-17 10:49:11 +08:00
}
2021-02-07 10:45:07 +08:00
// deal ellipsis, expand strides info
if (ellipsisMask > 0) {
int32_t beginMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 };
int32_t endMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 };
int32_t shrinkAxisMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 };
int32_t newAxisMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 };
// expand stride info
int ellipsisPos = -1;
for (int i = 0; i < strideSize; i++) {
int temp = ellipsisMask & (1 << i);
if (temp != 0) {
ellipsisPos = i;
break;
}
}
MNN_ASSERT(ellipsisPos >= 0 && ellipsisPos < strideSize);
/*
Example: foo's dim is [2, 3, 4, 5, 6, 7], foo[0:2, :, 3:5, 3:6]:
1. strideSize = 4, inputDim = 6, ellipsis = 2(0010)
2. left part: 0:2, right part: 3:5, 3:6
3. expand: foo[0:2, 0:3, 0:4, 3:5, 3:6]
*/
int ellpsisSize = inputDim - strideSize, strideIdx = 0;
for (int i = 0; i < inputDim; i++) {
if (i == ellipsisPos) {
strideIdx++;
}
if (i >= ellipsisPos && i <= ellipsisPos + ellpsisSize) {
begins[i] = 0;
ends[i] = inputShape[i];
strides[i] = 1;
beginMasksTmp[i] = 0;
endMasksTmp[i] = 0;
shrinkAxisMasksTmp[i] = 0;
} else {
begins[i] = begin->host<int32_t>()[strideIdx];
ends[i] = end->host<int32_t>()[strideIdx];
strides[i] = strided->host<int32_t>()[strideIdx];
beginMasksTmp[i] = beginMasks[strideIdx];
endMasksTmp[i] = endMasks[strideIdx];
shrinkAxisMasksTmp[i] = shrinkAxisMasks[strideIdx];
newAxisMasksTmp[i] = newAxisMasks[strideIdx++];
}
}
for (int i = 0; i < inputDim; i++) {
beginMasks[i] = beginMasksTmp[i];
endMasks[i] = endMasksTmp[i];
shrinkAxisMasks[i] = shrinkAxisMasksTmp[i];
newAxisMasks[i] = newAxisMasksTmp[i];
}
strideSize = inputDim;
} else {
for (int i = 0; i < strideSize; i++) {
begins[i] = begin->host<int>()[i];
ends[i] = end->host<int>()[i];
strides[i] = strided->host<int>()[i];
}
}
2019-04-17 10:49:11 +08:00
2020-11-05 16:41:56 +08:00
int32_t beginShape[MNN_MAX_TENSOR_DIM];
int32_t endShape[MNN_MAX_TENSOR_DIM];
int32_t stridedShape[MNN_MAX_TENSOR_DIM];
int32_t outputShape[MNN_MAX_TENSOR_DIM];
int32_t outputShapeShrinked[MNN_MAX_TENSOR_DIM];
2021-02-07 10:45:07 +08:00
2020-11-05 16:41:56 +08:00
int outputShapeSize = 0;
int outputShapeShrinkSize = 0;
2021-02-07 10:45:07 +08:00
int strideDealDims = 0;
2020-11-05 16:41:56 +08:00
auto beginAndEndShapeLimit = [](int shape, int dimSize, bool exclusive) -> int {
int maxShape = dimSize - 1, minShape = -dimSize;
if (exclusive) {
++maxShape;
--minShape;
}
shape = (shape > maxShape ? maxShape : shape);
shape = (shape < minShape ? minShape : shape);
if (shape < 0) {
shape += dimSize;
}
return shape;
};
2019-04-17 10:49:11 +08:00
int inputDimOffset = 0;
2021-02-07 10:45:07 +08:00
for (int i = 0; i < strideSize; i++) {
if (newAxisMasks[i] > 0) {
outputShape[outputShapeSize] = 1;
outputShapeSize++;
outputShapeShrinked[outputShapeShrinkSize] = 1;
outputShapeShrinkSize++;
continue;
}
auto inputDim = inputShape[inputDimOffset++];
2021-02-07 10:45:07 +08:00
strideDealDims++;
if (beginMasks[i] > 0) {
2019-04-17 10:49:11 +08:00
beginShape[i] = 0;
} else {
beginShape[i] = std::min(inputDim, begins[i]);
2020-11-05 16:41:56 +08:00
}
if (beginShape[i] < 0) {
beginShape[i] += input->buffer().dim[i].extent;
2019-04-17 10:49:11 +08:00
}
2021-02-07 10:45:07 +08:00
if (endMasks[i] > 0) {
endShape[i] = inputDim;
} else {
endShape[i] = beginAndEndShapeLimit(ends[i], inputDim, true);
2019-04-17 10:49:11 +08:00
}
2021-02-07 10:45:07 +08:00
stridedShape[i] = shrinkAxisMasks[i] > 0 ? 1 : strides[i];
2019-04-17 10:49:11 +08:00
if (endShape[i] < beginShape[i]) {
int t = beginShape[i];
beginShape[i] = endShape[i];
endShape[i] = t;
MNN_ASSERT(stridedShape[i] != 0);
if (stridedShape[i] < 0) {
stridedShape[i] = -stridedShape[i];
} else {
// MNN_ASSERT(false); // TODO: should be the wrong case, but there is one in linfeng's faster
// rcnn face model
beginShape[i] = endShape[i]; // TODO: temp solution
}
}
2021-02-07 10:45:07 +08:00
if (shrinkAxisMasks[i] == 0) {
2019-04-17 10:49:11 +08:00
int size = (endShape[i] - beginShape[i] - 1) / stridedShape[i] + 1;
2020-11-05 16:41:56 +08:00
outputShape[outputShapeSize] = size;
outputShapeSize++;
outputShapeShrinked[outputShapeShrinkSize] = size;
outputShapeShrinkSize++;
2019-04-17 10:49:11 +08:00
} else {
outputShape[outputShapeSize] = std::min(1, inputDim);
2020-11-05 16:41:56 +08:00
outputShapeSize++;
2019-04-17 10:49:11 +08:00
}
}
2021-02-07 10:45:07 +08:00
int outputDimensionsWithoutRemain = strideDealDims;
int dimensionRemained = input->buffer().dimensions - strideDealDims;
2019-04-17 10:49:11 +08:00
for (int i = 0; i < dimensionRemained; i++) {
2020-11-05 16:41:56 +08:00
outputShapeShrinked[outputShapeShrinkSize] = input->buffer().dim[outputDimensionsWithoutRemain + i].extent;
outputShapeShrinkSize++;
2019-04-17 10:49:11 +08:00
}
2020-11-05 16:41:56 +08:00
output->buffer().dimensions = outputShapeShrinkSize;
2019-04-17 10:49:11 +08:00
output->buffer().type = input->buffer().type;
2020-11-05 16:41:56 +08:00
for (int i = 0; i < outputShapeShrinkSize; i++) {
2019-04-17 10:49:11 +08:00
output->buffer().dim[i].extent = outputShapeShrinked[i];
}
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE_INPUTS(StridedSliceComputer, OpType_StridedSlice, (std::vector<int>{1,2,3}));
2019-04-17 10:49:11 +08:00
} // namespace MNN