MNN/source/shape/ShapeBinaryOp.cpp

117 lines
3.9 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeBinaryOp.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/SizeComputer.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
class BinaryOpComputer : public SizeComputer {
public:
static bool outputBool(int operation) {
if (operation == BinaryOpOperation_GREATER_EQUAL) {
return true;
}
if (operation == BinaryOpOperation_GREATER) {
return true;
}
if (operation == BinaryOpOperation_LESS) {
return true;
}
if (operation == BinaryOpOperation_LESS_EQUAL) {
return true;
}
if (operation == BinaryOpOperation_EQUAL) {
return true;
}
return false;
}
virtual bool onComputeSize(const Op* op, const std::vector<Tensor*>& inputs,
2019-04-17 10:49:11 +08:00
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
// set output type & format
auto input0 = inputs[0], input1 = inputs[1], output = outputs[0];
auto &buffer = output->buffer();
2019-04-17 10:49:11 +08:00
const auto opType = op->main_as_BinaryOp()->opType();
if (outputBool(opType)) {
buffer.type = halide_type_of<int32_t>();
2019-04-17 10:49:11 +08:00
} else {
buffer.type = input0->getType();
2019-04-17 10:49:11 +08:00
}
2020-02-26 09:57:17 +08:00
if (input0->getType().code != input1->getType().code) {
MNN_PRINT("Error for binary op: input0's type != input1's type\n");
return false;
}
if (input0->dimensions() < input1->dimensions()) {
auto temp = input0;
input0 = input1;
input1 = temp;
}
2020-02-26 09:57:17 +08:00
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(input0)->dimensionFormat;
2019-04-17 10:49:11 +08:00
2020-02-26 09:57:17 +08:00
// if one scalar input -> just copy the other
if (input1->dimensions() == 0) {
TensorUtils::copyShape(input0, output);
return true;
}
// else if inputs shape equals -> just copy any one
2020-02-26 09:57:17 +08:00
bool sameShape = true;
if (input0->dimensions() == input1->dimensions()) {
for (int i = 0; i < input0->buffer().dimensions; i++) {
if (input0->buffer().dim[i].extent != input1->buffer().dim[i].extent) {
sameShape = false;
break;
}
}
}
else {
sameShape = false;
}
if (sameShape) {
TensorUtils::copyShape(input0, output);
return true;
}
// else if broadcast NOT supported -> failed
const int maxDimensions = input0->dimensions();
const int diffDimension = input0->dimensions() - input1->dimensions();
2020-02-26 09:57:17 +08:00
int outputDims[maxDimensions];
for (int i = 0; i < maxDimensions; i++) {
outputDims[i] = input0->buffer().dim[i].extent;
}
for (int i = diffDimension; i < maxDimensions; i++) {
const int input1Index = i - diffDimension;
int dim1 = input1->buffer().dim[input1Index].extent;
if (dim1 != outputDims[i] && (dim1 != 1 && outputDims[i] != 1)) {
MNN_PRINT("Don't support broadcast for binaryOp, i0=%d, i1=%d\n", outputDims[i], dim1);
return false;
}
if (dim1 == outputDims[i]) {
continue;
}
2020-02-26 09:57:17 +08:00
if (dim1 != outputDims[i] && (dim1 == 1 || outputDims[i] == 1)) {
outputDims[i] = outputDims[i] * dim1;
} else {
MNN_PRINT("Error, the logic flow should never get here");
return false;
}
}
2020-02-26 09:57:17 +08:00
buffer.dimensions = maxDimensions;
2020-02-26 09:57:17 +08:00
for (int i = 0; i < maxDimensions; i++) {
buffer.dim[i].extent = outputDims[i];
}
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE(BinaryOpComputer, OpType_BinaryOp);
} // namespace MNN