| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  ShapePool.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2019/01/10.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <math.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "core/Macro.h"
 | 
					
						
							|  |  |  | #include "core/SizeComputer.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace MNN { | 
					
						
							|  |  |  | class PoolSizeComputer : public SizeComputer { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs, | 
					
						
							|  |  |  |                                const std::vector<Tensor*>& outputs) const override { | 
					
						
							|  |  |  |         MNN_ASSERT(1 == inputs.size()); | 
					
						
							|  |  |  |         MNN_ASSERT(1 == outputs.size()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         auto input  = inputs[0]; | 
					
						
							|  |  |  |         auto output = outputs[0]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         ::memcpy(output->buffer().dim, input->buffer().dim, input->buffer().dimensions * sizeof(halide_dimension_t)); | 
					
						
							| 
									
										
										
										
											2020-02-26 17:44:28 +08:00
										 |  |  |         output->buffer().dimensions = input->dimensions(); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         auto layer = op->main_as_Pool(); | 
					
						
							|  |  |  |         int outw   = 1; | 
					
						
							|  |  |  |         int outh   = 1; | 
					
						
							|  |  |  |         if (!layer->isGlobal()) { | 
					
						
							| 
									
										
										
										
											2019-06-24 11:32:41 +08:00
										 |  |  |             // when given explicit pad value in tensorflow mode pool, size compute will fast failed to help find problem
 | 
					
						
							|  |  |  |             if ((layer->padType() == PoolPadType_VALID || layer->padType() == PoolPadType_SAME) && (layer->padX() != 0 || layer->padY() != 0)) { | 
					
						
							|  |  |  |                 MNN_PRINT("tensorflow mode pool should not have explict pad value\n"); | 
					
						
							|  |  |  |                 return false; | 
					
						
							|  |  |  |             } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             int w = input->width(); | 
					
						
							|  |  |  |             int h = input->height(); | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |             if (nullptr != layer->pads()) { | 
					
						
							|  |  |  |                 w = w + layer->pads()->data()[1] + layer->pads()->data()[3]; | 
					
						
							|  |  |  |                 h = h + layer->pads()->data()[0] + layer->pads()->data()[2]; | 
					
						
							|  |  |  |             } else { | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |                 w += layer->padX() * 2; | 
					
						
							|  |  |  |                 h += layer->padY() * 2; | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |             } | 
					
						
							|  |  |  |             int kernelWidth  = std::min(layer->kernelX(), input->width()); | 
					
						
							|  |  |  |             int kernelHeight = std::min(layer->kernelY(), input->height()); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |             if (layer->padType() == PoolPadType_SAME) { // Tensorflow padding mode SAME
 | 
					
						
							|  |  |  |                 outw = ceil((float)w / (float)layer->strideX()); | 
					
						
							|  |  |  |                 outh = ceil((float)h / (float)layer->strideY()); | 
					
						
							|  |  |  |             } else if (layer->padType() == PoolPadType_VALID) { // Tensorflow padding mode VALID
 | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |                 outw = ceil((float)(w - kernelWidth + 1) / (float)layer->strideX()); | 
					
						
							|  |  |  |                 outh = ceil((float)(h - kernelHeight + 1) / (float)layer->strideY()); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             } else { | 
					
						
							| 
									
										
										
										
											2019-06-05 10:45:59 +08:00
										 |  |  |                 if (layer->ceilModel()) { | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |                     outw = UP_DIV(w - kernelWidth, layer->strideX()) + 1; | 
					
						
							|  |  |  |                     outh = UP_DIV(h - kernelHeight, layer->strideY()) + 1; | 
					
						
							| 
									
										
										
										
											2019-06-05 10:45:59 +08:00
										 |  |  |                 } else { | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |                     outw = floor((w - kernelWidth) / layer->strideX() + 1); | 
					
						
							|  |  |  |                     outh = floor((h - kernelHeight) / layer->strideY() + 1); | 
					
						
							| 
									
										
										
										
											2019-06-05 10:45:59 +08:00
										 |  |  |                 } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         if (outw <= 0 || outh <= 0) { | 
					
						
							|  |  |  |             return false; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2020-03-22 20:16:29 +08:00
										 |  |  |         auto format = TensorUtils::getDescribe(inputs[0])->dimensionFormat; | 
					
						
							|  |  |  |         if (format != MNN_DATA_FORMAT_NC4HW4) { | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |             return false; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         output->buffer().dim[3].extent = outw; | 
					
						
							|  |  |  |         output->buffer().dim[2].extent = outh; | 
					
						
							| 
									
										
										
										
											2019-08-22 20:13:46 +08:00
										 |  |  |         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat; | 
					
						
							| 
									
										
										
										
											2019-07-11 13:56:52 +08:00
										 |  |  |         output->buffer().type          = input->buffer().type; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         return true; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs, | 
					
						
							|  |  |  |                                  const std::vector<Tensor*>& outputs) const override { | 
					
						
							|  |  |  |         auto size  = (float)outputs[0]->elementSize() / 1024.0f / 1024.0f; | 
					
						
							|  |  |  |         auto layer = op->main_as_Pool(); | 
					
						
							|  |  |  |         return size * layer->kernelX() * layer->kernelY(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | REGISTER_SHAPE(PoolSizeComputer, OpType_Pooling); | 
					
						
							| 
									
										
										
										
											2019-07-11 13:56:52 +08:00
										 |  |  | REGISTER_SHAPE(PoolSizeComputer, OpType_PoolInt8); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | } // namespace MNN
 |