MNN/source/shape/ShapeMatMul.cpp

128 lines
4.5 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeMatMul.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
2020-11-05 16:41:56 +08:00
#include "shape/SizeComputer.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
2023-12-04 11:12:20 +08:00
#include "core/OpCommonUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
class MatMulSizeComputer : public SizeComputer {
2023-12-04 11:12:20 +08:00
static void _getTranspose(const MNN::Op* op, bool& transposeA, bool& transposeB) {
transposeA = false;
transposeB = false;
if (op->type() == OpType_MatMul) {
transposeA = op->main_as_MatMul()->transposeA();
transposeB = op->main_as_MatMul()->transposeB();
} else {
// BatchMatMul
transposeA = op->main_as_BatchMatMulParam()->adjX();
transposeB = op->main_as_BatchMatMulParam()->adjY();
}
2023-12-04 11:12:20 +08:00
}
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == outputs.size());
2019-04-17 10:49:11 +08:00
auto output = outputs[0];
output->buffer().type = inputs[0]->buffer().type;
2023-12-04 11:12:20 +08:00
bool transposeA;
bool transposeB;
_getTranspose(op, transposeA, transposeB);
int e, l, h;
bool valid = OpCommonUtils::computeMatMulSize(transposeA, transposeB, inputs[0], inputs[1], e, l, h);
if (!valid) {
return false;
}
// Compute BroastCast Dims
2023-12-04 11:12:20 +08:00
auto i0Dim = inputs[0]->dimensions();
auto i1Dim = inputs[1]->dimensions();
auto input0 = inputs[0];
auto input1 = inputs[1];
auto o0Dim = i0Dim;
if (i1Dim > i0Dim) {
o0Dim = i1Dim;
input0 = inputs[1];
input1 = inputs[0];
}
auto dimOffset = o0Dim - 2;
output->buffer().dimensions = o0Dim;
const int maxDimensions = dimOffset;
const int diffDimension = input0->dimensions() - input1->dimensions();
for (int i = 0; i < maxDimensions; i++) {
output->setLength(i, input0->length(i));
}
for (int i = diffDimension; i < maxDimensions; i++) {
const int input1Index = i - diffDimension;
int dim1 = input1->buffer().dim[input1Index].extent;
if (dim1 != output->length(i) && (dim1 != 1 && output->length(i) != 1)) {
MNN_PRINT("Don't support broadcast for MatMulOp, i0=%d, i1=%d\n", output->length(i), dim1);
return false;
}
if (dim1 == output->length(i)) {
continue;
}
if (dim1 != output->length(i) && (dim1 == 1 || output->length(i) == 1)) {
output->setLength(i, output->length(i) * dim1);
} else {
MNN_PRINT("Error, the logic flow should never get here");
return false;
}
}
// Last Two dim
2023-12-04 11:12:20 +08:00
output->setLength(o0Dim - 2, e);
output->setLength(o0Dim - 1, h);
bool eValid = inputs[0]->dimensions() > 1;
bool hValid = inputs[1]->dimensions() > 1;
int squeezeDim = 0;
if (!eValid) {
squeezeDim++;
output->setLength(o0Dim - 2, h);
}
if (!hValid) {
squeezeDim++;
output->setLength(o0Dim - 1, e);
}
if (squeezeDim > 0) {
output->buffer().dimensions = o0Dim - squeezeDim;
}
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
2019-04-17 10:49:11 +08:00
return true;
}
2020-11-05 16:41:56 +08:00
virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
2023-12-04 11:12:20 +08:00
bool transposeA;
bool transposeB;
_getTranspose(op, transposeA, transposeB);
int e=0, l=0, h=0;
OpCommonUtils::computeMatMulSize(transposeA, transposeB, inputs[0], inputs[1], e, l, h);
2020-11-05 16:41:56 +08:00
Tensor* C = outputs[0];
auto flops = (float)e * l * h / FLOPS_M;
2023-12-04 11:12:20 +08:00
bool eValid = inputs[0]->dimensions() > 1;
bool hValid = inputs[1]->dimensions() > 1;
int squeezeDim = 0;
if (!eValid) {
squeezeDim++;
}
if (!hValid) {
squeezeDim++;
}
for (int i=0; i<C->dimensions() - 2 + squeezeDim; ++i) {
flops *= C->length(i);
}
2020-11-05 16:41:56 +08:00
return flops;
}
2019-04-17 10:49:11 +08:00
};
REGISTER_SHAPE(MatMulSizeComputer, OpType_MatMul);
REGISTER_SHAPE(MatMulSizeComputer, OpType_BatchMatMul);
2019-04-17 10:49:11 +08:00
} // namespace MNN