MNN/source/backend/opencl/execution/buffer/ConvBufLowMemoryExecution.cpp

1002 lines
54 KiB
C++
Raw Normal View History

2023-12-27 17:26:44 +08:00
// ConvBufLowMemoryExecution.cpp
//
// Created by MNN on 2023/10/12.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifdef MNN_LOW_MEMORY
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "ConvBufLowMemoryExecution.hpp"
// #define LOG_VERBOSE
namespace MNN {
namespace OpenCL {
// set mDequantScale mDequantOffset mNumQuantBit mFilterDataPtr from mConv2dParams
void ConvBufLowMemoryExecution::getInfoFromOpLowMemory(std::shared_ptr<ConvolutionCommon::Int8Common> & quanCommon) {
2024-08-24 15:46:21 +08:00
quanCommon = ConvolutionCommon::load(mOp, this->backend(), false, true);
2024-05-11 19:17:02 +08:00
if (mResource->mConv2dParams->quanParameter() != nullptr) {
2023-12-27 17:26:44 +08:00
mLowMemoryFlag = true;
} else {
MNN_ERROR("Conv buf low memory init error.\n");
MNN_ASSERT(false);
}
2024-07-04 11:53:45 +08:00
mResource->mInputChannel = quanCommon->weight.size() / (mResource->mKernelWidth * mResource->mKernelHeight * mResource->mOutputChannel);
// set mResource->mNumQuantBit
if(quanCommon->canUseInt4){
mResource->mNumQuantBit = 4;
2024-08-24 15:46:21 +08:00
mResource->mInputChannel = (quanCommon->weight.size() * 2) / (mResource->mKernelWidth * mResource->mKernelHeight * mResource->mOutputChannel);
2024-07-04 11:53:45 +08:00
}else{
mResource->mNumQuantBit = 8;
}
2023-12-27 17:26:44 +08:00
// src of alpha in CPU
float * dequantAlpha = quanCommon->alpha.get();
2024-07-04 11:53:45 +08:00
int totalCount = quanCommon->alpha.size();
if (quanCommon->asymmetric) {
totalCount /= 2;
}
2024-04-19 11:58:21 +08:00
int numAlpha = mResource->mOutputChannel;
2024-07-04 11:53:45 +08:00
mResource->mBlockSize = totalCount / numAlpha;
2023-12-27 17:26:44 +08:00
// set mDequantScale mDequantOffset
2024-07-04 11:53:45 +08:00
int numAlphaPack = ROUND_UP(numAlpha, 4);
2024-05-11 19:17:02 +08:00
2024-07-04 11:53:45 +08:00
mResource->dequantScaleOffset.reset(Tensor::createDevice<int32_t>({mResource->mBlockSize, numAlphaPack, 2}));
mOpenCLBackend->onAcquireBuffer(mResource->dequantScaleOffset.get(), Backend::STATIC);
cl::Buffer &dequantScaleOffsetBuffer = openCLBuffer(mResource->dequantScaleOffset.get());
2023-12-27 17:26:44 +08:00
// transfer data from src in cpu to dst in gpu
2024-05-11 19:17:02 +08:00
int fpBytes = mOpenCLBackend->fpBytes();
2024-07-04 11:53:45 +08:00
cl_int resBias, resScaleOffset;
2024-05-11 19:17:02 +08:00
2024-07-04 11:53:45 +08:00
int mapSize = mResource->mBlockSize * numAlphaPack * sizeof(int32_t) * 2;
void * dequantScaleOffsetBufferMap = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(dequantScaleOffsetBuffer, true, CL_MAP_WRITE, 0, mapSize, nullptr, nullptr, &resScaleOffset);
// mBlockSize % 4 need equal 0
if (dequantScaleOffsetBufferMap != nullptr && resScaleOffset == CL_SUCCESS) {
2024-05-11 19:17:02 +08:00
if (quanCommon->asymmetric) {
for (int i = 0; i < numAlpha; ++i) {
2024-07-04 11:53:45 +08:00
auto srcZ = dequantAlpha + i * mResource->mBlockSize * 2;
for(int j = 0; j < mResource->mBlockSize; ++j){
float o = srcZ[2*j+0];
float s = srcZ[2*j+1];
((float *)dequantScaleOffsetBufferMap)[(j * numAlphaPack + i) * 2] = s;
((float *)dequantScaleOffsetBufferMap)[(j * numAlphaPack + i) * 2 + 1] = o;
}
2023-12-27 17:26:44 +08:00
}
} else {
2024-05-11 19:17:02 +08:00
for (int i = 0; i < numAlpha; ++i) {
2024-07-04 11:53:45 +08:00
auto srcZ = dequantAlpha + i * mResource->mBlockSize;
for(int j = 0; j < mResource->mBlockSize; ++j){
((float *)dequantScaleOffsetBufferMap)[(j * numAlphaPack + i) * 2] = srcZ[j];
((float *)dequantScaleOffsetBufferMap)[(j * numAlphaPack + i) * 2 + 1] = 0.0f;
}
2023-12-27 17:26:44 +08:00
}
}
} else {
MNN_ERROR("Map error dequantBufferMap == nullptr \n");
MNN_ASSERT(false);
}
2024-07-04 11:53:45 +08:00
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(dequantScaleOffsetBuffer, dequantScaleOffsetBufferMap);
2023-12-27 17:26:44 +08:00
// set mFilterDataPtr
mFilterDataPtr = (void *)quanCommon->weight.get();
}
2024-07-04 11:53:45 +08:00
bool ConvBufLowMemoryExecution::convertToQuantWeight1x1Buffer(cl::Buffer input, int pack) {
#ifdef LOG_VERBOSE
MNN_PRINT("start convertToQuantWeight1x1Buffer !\n");
#endif
auto runtime = mOpenCLBackend->getOpenCLRuntime();
std::string kernelName = "conv2d_1x1_weight_quant_buffer";
if(mResource->mUseImage){
kernelName = "conv2d_1x1_weight_quant_image";
}
std::set<std::string> buildOptions;
if (mResource->mNumQuantBit == 8) {
buildOptions.emplace("-DUSE_LOW_BIT_WEIGHT_INT8");
} else if (mResource->mNumQuantBit == 4){
// int4 case
buildOptions.emplace("-DUSE_LOW_BIT_WEIGHT_INT4");
} else {/* More types to be supported. */}
if(mResource->mInputChannel % pack != 0){
2024-08-24 15:46:21 +08:00
buildOptions.emplace("-DCHANNEL_LEAVE");
2024-07-04 11:53:45 +08:00
}
2024-08-24 15:46:21 +08:00
2024-07-04 11:53:45 +08:00
mBufferToConv1x1Kernel = runtime->buildKernelWithCache("buffer_convert_quant", kernelName, buildOptions);
auto kernel = mBufferToConv1x1Kernel->get();
uint32_t gws[2] = {static_cast<uint32_t>(UP_DIV(mResource->mInputChannel, pack)), static_cast<uint32_t>(mResource->mOutputChannel)};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= kernel.setArg(idx++, gws[0]);
ret |= kernel.setArg(idx++, gws[1]);
ret |= kernel.setArg(idx++, input);
if(mResource->mUseImage){
ret |= kernel.setArg(idx++, *mResource->mKernelImage.get());
}else{
ret |= kernel.setArg(idx++, *mResource->mKernelBuffer.get());
}
ret |= kernel.setArg(idx++, mResource->mInputChannel);
ret |= kernel.setArg(idx++, mResource->mOutputChannel);
MNN_CHECK_CL_SUCCESS(ret, "setArg convertToQuantWeight1x1Buffer");
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mBufferToConv1x1Kernel));
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
cl::Event event;
cl_int res;
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
for (size_t i = 0; i < lws.size(); ++i) {
roundUpGroupWorkSize[i] = ROUND_UP(gws[i], lws[i]);
}
res = runtime->commandQueue().enqueueNDRangeKernel(kernel, cl::NullRange,
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
cl::NDRange(lws[0], lws[1]), nullptr, &event);
2024-08-24 15:46:21 +08:00
2024-07-04 11:53:45 +08:00
event.wait();
MNN_CHECK_CL_SUCCESS(res, "convertToQuantWeight1x1Buffer");
#ifdef LOG_VERBOSE
MNN_PRINT("end convertToQuantWeight1x1Buffer !\n");
#endif
return true;
}
2023-12-27 17:26:44 +08:00
// set mKernelBuffer for the 1x1 kernels
void ConvBufLowMemoryExecution::set1x1WeightLowMemory(int packCout, int packCin, void * filterDataPtr, std::shared_ptr<ConvolutionCommon::Int8Common> & quanCommon) {
cl_int res;
2024-08-24 15:46:21 +08:00
std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>({ROUND_UP(mResource->mOutputChannel, packCout), ROUND_UP(mResource->mInputChannel, packCin), 1, 1}));
2023-12-27 17:26:44 +08:00
size_t buffer_size = filterBuffer->usize() / sizeof(float);
2024-08-24 15:46:21 +08:00
size_t cpy_size = mResource->mOutputChannel * mResource->mInputChannel;
// shared part for all cases
if (mResource->mNumQuantBit == 4){
// int4 case
buffer_size /= 2;
cpy_size = UP_DIV(cpy_size, 2);
} else {/* More types to be supported. */}
2023-12-27 17:26:44 +08:00
float *dequantAlpha = quanCommon->alpha.get();
2024-07-04 11:53:45 +08:00
cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size);
void *mapPtr = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &res);
if(mapPtr != nullptr && res == CL_SUCCESS){
::memcpy(mapPtr, filterDataPtr, cpy_size);
} else {
MNN_ERROR("set1x1WeightLowMemory: Map error ptrCL == nullptr \n");
MNN_ASSERT(false);
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, mapPtr);
2024-08-24 15:46:21 +08:00
2024-05-11 19:17:02 +08:00
// Use Image load weights
if(UP_DIV(mResource->mInputChannel, packCin) <= 16384 && ROUND_UP(mResource->mOutputChannel, packCout) <= 16384){
mResource->mUseImage = true;
}
if(mResource->mUseImage) {
2024-08-24 15:46:21 +08:00
if(mResource->mNumQuantBit == 4){
2024-09-12 12:57:57 +08:00
packCin *= 2;
2024-08-24 15:46:21 +08:00
}
2024-09-12 12:57:57 +08:00
size_t w = ROUND_UP(mResource->mOutputChannel, packCout);
size_t h = UP_DIV(mResource->mInputChannel, packCin);
mResource->mKernelImage.reset(new cl::Image2D(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE, cl::ImageFormat(CL_RGBA, CL_SIGNED_INT32), w, h, 0, nullptr, &res));
2024-05-11 19:17:02 +08:00
if (nullptr == mResource->mKernelImage.get() || res != CL_SUCCESS) {
2024-07-04 11:53:45 +08:00
MNN_ERROR("Alloc Image %d x %d error, code:%d \n", (int)w, (int)h, (int)res);
2024-05-11 19:17:02 +08:00
}
} else{
mResource->mKernelBuffer.reset(new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size));
}
2024-07-04 11:53:45 +08:00
convertToQuantWeight1x1Buffer(filterBufferCL, packCin);
2023-12-27 17:26:44 +08:00
}
// set mFilter for the general kernels
void ConvBufLowMemoryExecution::setGeneralWeightLowMemory(void* filterDataPtr, std::shared_ptr<ConvolutionCommon::Int8Common> & quanCommon) {
if (filterDataPtr != nullptr) {
2024-08-24 15:46:21 +08:00
std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>({ROUND_UP(mResource->mOutputChannel, 4), mResource->mInputChannel, mResource->mKernelWidth, mResource->mKernelHeight}));
2023-12-27 17:26:44 +08:00
size_t buffer_size = filterBuffer->usize() / sizeof(float);
2024-08-24 15:46:21 +08:00
size_t cpy_size = mResource->mOutputChannel * mResource->mInputChannel * mResource->mKernelWidth * mResource->mKernelHeight;
if (mResource->mNumQuantBit == 4){
buffer_size /= 2;
cpy_size = UP_DIV(cpy_size, 2);
}
2023-12-27 17:26:44 +08:00
cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size);
filterBuffer->buffer().device = (uint64_t)(&filterBufferCL);
float *dequantAlpha = quanCommon->alpha.get();
// map and pack data from filterDataPtr
cl_int res;
auto ptrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &res);
if(ptrCL != nullptr && res == CL_SUCCESS) {
2024-08-24 15:46:21 +08:00
::memcpy(ptrCL, filterDataPtr, cpy_size);
2023-12-27 17:26:44 +08:00
} else {
MNN_ERROR("setGeneralWeightLowMemory: Map error ptrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, ptrCL);
// convert to NC4HW4
2024-07-04 11:53:45 +08:00
if (mResource->mNumQuantBit == 8) {
2023-12-27 17:26:44 +08:00
// ROUND_UP(IC, 4), UP_DIV(OC, 4) * mKernelWidth * mKernelHeight
2024-08-24 15:46:21 +08:00
mResource->mFilter.reset(Tensor::createDevice<int8_t>({1, UP_DIV(mResource->mOutputChannel, 4) * mResource->mKernelWidth * mResource->mKernelHeight, 1, 4 * ROUND_UP(mResource->mInputChannel, 4)}));
2024-04-19 11:58:21 +08:00
mOpenCLBackend->onAcquireBuffer(mResource->mFilter.get(), Backend::STATIC);
2023-12-27 17:26:44 +08:00
MNN::OpenCL::BufferConvertor bufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
// filterBuffer shape: {OC, ROUND_UP(IC, 4), mKernelWidth, mKernelHeight}
2024-07-04 11:53:45 +08:00
bufferConvertor.convertToNC4HW4Buffer(filterBuffer.get(), MNN::OpenCL::CONV2D_FILTER, mResource->mFilter.get(), false, true, mLowMemoryFlag, mResource->mNumQuantBit);
} else if (mResource->mNumQuantBit == 4){
2023-12-27 17:26:44 +08:00
// ROUND_UP(IC, 4), UP_DIV(OC, 4) * mKernelWidth * mKernelHeight
// For int4 case, data stored in mFilter should be uint8_t,
// while "Tensor::createDevice<uint8_t>" occupies more memory than "Tensor::createDevice<int8_t>".
// Therefore, we use "Tensor::createDevice<int8_t>" currently, leaving "Tensor::createDevice<uint8_t>" to be supported.
2024-08-24 15:46:21 +08:00
mResource->mFilter.reset(Tensor::createDevice<int8_t>({1, UP_DIV(mResource->mOutputChannel, 4) * mResource->mKernelWidth * mResource->mKernelHeight, 1, 2 * ROUND_UP(mResource->mInputChannel, 4)}));
2024-04-19 11:58:21 +08:00
mOpenCLBackend->onAcquireBuffer(mResource->mFilter.get(), Backend::STATIC);
2023-12-27 17:26:44 +08:00
MNN::OpenCL::BufferConvertor bufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
// filterBuffer shape: {OC, ROUND_UP(IC, 4), mKernelWidth, mKernelHeight}
2024-07-04 11:53:45 +08:00
bufferConvertor.convertToNC4HW4Buffer(filterBuffer.get(), MNN::OpenCL::CONV2D_FILTER, mResource->mFilter.get(), false, true, mLowMemoryFlag, mResource->mNumQuantBit);
2023-12-27 17:26:44 +08:00
} else {/* More types to be supported. */}
} else {
MNN_ERROR("GetConvParams Error: filterDataPtr == nullptr. \n");
MNN_ASSERT(false);
}
}
// select the fastest kernel for the general cases by tuning
void ConvBufLowMemoryExecution::tuneGeneralCaseLowMemory(Tensor * input, Tensor * output) {
2024-09-12 12:57:57 +08:00
mUnits.resize(1);
2024-04-19 11:58:21 +08:00
auto &unit = mUnits[0];
2023-12-27 17:26:44 +08:00
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
2024-09-12 12:57:57 +08:00
const int batch = outputShape.at(0);
2023-12-27 17:26:44 +08:00
const int height = outputShape.at(1);
const int width = outputShape.at(2);
const int outChannel = outputShape.at(3);
const int inputHeight = inputShape.at(1);
const int inputWidth = inputShape.at(2);
const int inputChannels = inputShape.at(3);
const int inputChannelBlocks = UP_DIV(inputChannels, 4);
2024-07-04 11:53:45 +08:00
const int blockDim = mResource->mInputChannel / mResource->mBlockSize;
2024-04-19 11:58:21 +08:00
std::string info = std::to_string(inputChannels) + "_" + std::to_string(outChannel) + "_" + std::to_string(mResource->mKernelHeight) + "_" + std::to_string(mResource->mKernelWidth) + "_" + std::to_string(mResource->mStrides[0]) + "_" + std::to_string(mResource->mStrides[1]) + "_" + std::to_string(mResource->mDilations[0]) + "_" + std::to_string(mResource->mDilations[1]);
2023-12-27 17:26:44 +08:00
int inputImageShape[2] = {inputHeight, inputWidth};
int outputImageShape[2] = {height, width};
2024-02-29 16:21:40 +08:00
int kernelShape[2] = {mResource->mKernelHeight, mResource->mKernelWidth};
int strideShape[2] = {mResource->mStrides[0], mResource->mStrides[1]};
2023-12-27 17:26:44 +08:00
int paddingShape[2] = {mPaddings[0], mPaddings[1]};
2024-02-29 16:21:40 +08:00
int dilationShape[2] = {mResource->mDilations[0], mResource->mDilations[1]};
2023-12-27 17:26:44 +08:00
// {"conv_2d_c4h1w2", "conv_2d_c4h1w1", "conv_2d_c8h1w1", "conv_2d_c4h1w4", "conv_2d_c8h2w1", "conv_2d_c4h4w1"};
const int total_kernel = 7;
2024-04-19 11:58:21 +08:00
std::string kernelName[total_kernel] = {"conv_2d_int_c4h1w1", "conv_2d_int_c4h1w2", "conv_2d_int_c4h4w1", "conv_2d_int_c8h2w1", "conv_2d_int_c8h4w1", "conv_2d_int_c4h1w4", "conv_2d_int_c8h1w4"};
2023-12-27 17:26:44 +08:00
int itemC[total_kernel] = {4, 4, 4, 8, 8, 4, 8};
int itemH[total_kernel] = {1, 1, 4, 2, 4, 1, 1};
int itemW[total_kernel] = {1, 2, 1, 1, 1, 4, 4};
int actual_kernel = total_kernel;
2024-04-19 11:58:21 +08:00
std::shared_ptr<KernelWrap> kernel[total_kernel];
2023-12-27 17:26:44 +08:00
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
// MNN_PRINT("Checking kernel %d.\n", knlCheck);
for (int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
2024-04-19 11:58:21 +08:00
std::set<std::string> buildOption = mResource->mBuildOptions;
2023-12-27 17:26:44 +08:00
if(outputShape.at(3) % itemC[knl_idx] != 0){
buildOption.emplace("-DCHANNEL_LEAVE");
}
if((outputShape.at(2) % itemW[knl_idx]) != 0 || (outputShape.at(1) % itemH[knl_idx]) != 0){
buildOption.emplace("-DBLOCK_LEAVE");
}
2024-07-04 11:53:45 +08:00
if(inputChannels % 4 != 0){
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
}
2024-04-19 11:58:21 +08:00
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_int_buf", kernelName[knl_idx], buildOption);
2023-12-27 17:26:44 +08:00
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * UP_DIV(outputShape.at(1), itemH[knl_idx]))};
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][0]);
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][1]);
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(input));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mFilter.get()));
2024-07-04 11:53:45 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
2024-04-19 11:58:21 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(output));
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(inputImageShape), inputImageShape);
ret |= kernel[knl_idx]->get().setArg(idx++, inputChannels);
ret |= kernel[knl_idx]->get().setArg(idx++, inputChannelBlocks);
2024-09-12 12:57:57 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, batch);
2024-04-19 11:58:21 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(outputImageShape), outputImageShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(kernelShape), kernelShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(strideShape), strideShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(paddingShape), paddingShape);
ret |= kernel[knl_idx]->get().setArg(idx++, sizeof(dilationShape), dilationShape);
ret |= kernel[knl_idx]->get().setArg(idx++, UP_DIV(width, itemW[knl_idx]));
ret |= kernel[knl_idx]->get().setArg(idx++, UP_DIV(outChannel, 4));
ret |= kernel[knl_idx]->get().setArg(idx++, UP_DIV(height, itemH[knl_idx]));
2024-07-04 11:53:45 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, blockDim);
2023-12-27 17:26:44 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg ConvBufLowMemory Kernel Select");
std::pair<std::vector<uint32_t>, int> retTune;
2024-07-04 11:53:45 +08:00
retTune = localWS2DDefault(globalWorkSize[knl_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName[knl_idx] + info, kernel[knl_idx]);
2023-12-27 17:26:44 +08:00
if(min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
}
}
int min_index = min_cost.second;
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
2024-04-19 11:58:21 +08:00
std::set<std::string> buildOption = mResource->mBuildOptions;
2023-12-27 17:26:44 +08:00
if(outputShape.at(3) % itemC[min_index] != 0){
buildOption.emplace("-DCHANNEL_LEAVE");
}
if((outputShape.at(2) % itemW[min_index]) != 0 || (outputShape.at(1) % itemH[min_index]) != 0){
buildOption.emplace("-DBLOCK_LEAVE");
}
2024-07-04 11:53:45 +08:00
if(inputChannels % 4 != 0){
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
}
2024-04-19 11:58:21 +08:00
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("conv_2d_int_buf", kernelName[min_index], buildOption);
2023-12-27 17:26:44 +08:00
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mFilter.get()));
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, sizeof(inputImageShape), inputImageShape);
ret |= unit.kernel->get().setArg(idx++, inputChannels);
ret |= unit.kernel->get().setArg(idx++, inputChannelBlocks);
2024-09-12 12:57:57 +08:00
ret |= unit.kernel->get().setArg(idx++, batch);
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, sizeof(outputImageShape), outputImageShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(kernelShape), kernelShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(strideShape), strideShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(paddingShape), paddingShape);
ret |= unit.kernel->get().setArg(idx++, sizeof(dilationShape), dilationShape);
ret |= unit.kernel->get().setArg(idx++, UP_DIV(width, itemW[min_index]));
ret |= unit.kernel->get().setArg(idx++, UP_DIV(outChannel, 4));
ret |= unit.kernel->get().setArg(idx++, UP_DIV(height, itemH[min_index]));
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, blockDim);
2023-12-27 17:26:44 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg ConvBufLowMemory");
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
2023-12-27 17:26:44 +08:00
return;
}
2024-09-12 12:57:57 +08:00
// weight inverse quantization, use xgemm opt
void ConvBufLowMemoryExecution::useFPWeightGemmLowMemory(Tensor * input, Tensor * output) {
mUnits.resize(3);
auto runtime = mOpenCLBackend->getOpenCLRuntime();
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
int channelPack = 16;
if(mResource->mUseImage && mResource->mNumQuantBit == 4){
channelPack = 32;
}
int area = inputShape.at(1) * inputShape.at(2);
int M = outputShape.at(0) * area;
int N = mResource->mOutputChannel;
int K = mResource->mInputChannel;
int mAlignK = 4;
int mAlignN = 16;
int mAlignM = 64;
// set M Align and N Align
if(mResource->mOutputChannel > 1024) {
mAlignN = 128;
} else if(mResource->mOutputChannel > 512) {
mAlignN = 64;
} else if(mResource->mOutputChannel > 96) {
mAlignN = 32;
}
float ratio = 1.0 * M / 1024.0 * N / 1024.0 * K / 1024.0;
if(M > 1024 && ratio >= 1.0) {
mAlignM = 128;
} else if(M > 512 && ratio >= 0.1) {
mAlignM = 64;
} else if(M > 96){
mAlignM = 32;
} else {
mAlignM = 16;
}
int alignM = ROUND_UP(M, mAlignM);
int alignN = ROUND_UP(N, mAlignN);
int alignK = ROUND_UP(K, mAlignK);
int blockDim = mResource->mInputChannel / mResource->mBlockSize;
// alloc temp bufer
mConvGemmWeightTensor.reset(Tensor::createDevice<float>({ROUND_UP(mResource->mOutputChannel, mAlignN) * ROUND_UP(mResource->mInputChannel, std::max(mAlignK, channelPack))}));
mConvGemmInpTensor.reset(Tensor::createDevice<float>({alignK * alignM}));
mConvGemmOutTensor.reset(Tensor::createDevice<float>({alignN * alignM}));
mOpenCLBackend->onAcquireBuffer(mConvGemmWeightTensor.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mConvGemmOutTensor.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mConvGemmInpTensor.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mConvGemmWeightTensor.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mConvGemmInpTensor.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mConvGemmOutTensor.get(), Backend::DYNAMIC);
//weight inverse quantization and rearrange
{
auto &unit = mUnits[0];
int outputChannelAlign = ROUND_UP(mResource->mOutputChannel, alignN);
int outputChannel4Align = ROUND_UP(mResource->mOutputChannel, 4);
std::set<std::string> buildOption = mResource->mBuildOptions;
if(mResource->mUseImage){
buildOption.emplace("-DUSE_IMAGE");
}
mGlobalWorkSize = {static_cast<uint32_t>(UP_DIV(mResource->mInputChannel, channelPack)), static_cast<uint32_t>(UP_DIV(mResource->mOutputChannel, 4))};
unit.kernel = runtime->buildKernel("gemm_conv1x1_buf", "inverse_quant_weight", buildOption);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
if(mResource->mUseImage){
ret |= unit.kernel->get().setArg(idx++, *mResource->mKernelImage.get());
}else{
ret |= unit.kernel->get().setArg(idx++, *mResource->mKernelBuffer.get());
}
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mConvGemmWeightTensor.get()));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannelAlign));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannel4Align));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(blockDim));
MNN_CHECK_CL_SUCCESS(ret, "setArg inverse_quant_weight");
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, maxWorkGroupSize, runtime, "inverse_quant_weight", unit.kernel).first;
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
}
// rearange input
{
auto &unit = mUnits[1];
std::set<std::string> buildOptions = mResource->mBuildOptions;
int m_pack = 4;
mGlobalWorkSize = {static_cast<uint32_t>(alignM/m_pack), static_cast<uint32_t>(alignK/4)};
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm_buf", "transpose_pad", buildOptions);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(unit.kernel));
int offset = 0;
int idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(mGlobalWorkSize[0]));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(mGlobalWorkSize[1]));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(alignM));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(alignK));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(M));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(K));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(area));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mConvGemmInpTensor.get()));
MNN_CHECK_CL_SUCCESS(ret, "setArg transpose_pad");
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, maxWorkGroupSize, runtime, "transpose_pad", unit.kernel).first;
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
}
// call gemm strassen
{
mStrassenComputor.reset(new StrassenMatrixComputor(backend(), 3));
mStrassenComputor->onEncode(alignM, alignK, alignN, alignM, alignN, alignN, openCLBuffer(mConvGemmInpTensor.get()), openCLBuffer(mConvGemmWeightTensor.get()), openCLBuffer(mConvGemmOutTensor.get()), false, openCLBuffer(mResource->mBias.get()));
}
// call output transpose
{
auto &unit = mUnits[2];
std::set<std::string> buildOptions = mResource->mBuildOptions;
int pack_m = 1;
if(M % 8 == 0) {
pack_m = 8;
} else if(M % 4 == 0) {
pack_m = 4;
}
buildOptions.emplace("-DM_VEC=" + std::to_string(pack_m));
unit.kernel = runtime->buildKernel("gemm_buf", "transpose_bias", buildOptions);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
mGlobalWorkSize = {static_cast<uint32_t>(UP_DIV(M, pack_m)), static_cast<uint32_t>(UP_DIV(N, 4))};
int offset = 0;
int idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(mGlobalWorkSize[0]));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(mGlobalWorkSize[1]));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(alignM));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(alignN));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(M));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(N));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(area));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mConvGemmOutTensor.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
MNN_CHECK_CL_SUCCESS(ret, "setArg transpose_bias");
mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, maxWorkGroupSize, runtime, "transpose_bias", unit.kernel).first;
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
}
return;
}
void ConvBufLowMemoryExecution::tuneGemvLowMemory(Tensor * input, Tensor * output) {
mUnits.resize(1);
2024-04-19 11:58:21 +08:00
auto &unit = mUnits[0];
2023-12-27 17:26:44 +08:00
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int outChannel = outputShape.at(3);
const int inputChannels = inputShape.at(3);
const int batch = outputShape.at(0);
2024-04-19 11:58:21 +08:00
const int height = outputShape.at(1);
const int width = outputShape.at(2);
2023-12-27 17:26:44 +08:00
const int inputChannelBlocks = UP_DIV(inputChannels, 4);
const int outputChannelBlocks = UP_DIV(outChannel, 4);
2024-07-04 11:53:45 +08:00
const int blockNum = mResource->mBlockSize;
const int blockDim = mResource->mInputChannel / mResource->mBlockSize;
2024-05-11 19:17:02 +08:00
2024-09-12 12:57:57 +08:00
int global_y = batch * height * width;
const int total_kernel = 3;
std::string kernelName[total_kernel] = {"gemv_conv_c1_buf", "gemv_conv_c2_buf", "gemv_conv_c4_buf"};
int itemC[total_kernel] = {1, 2, 4};
2024-04-19 11:58:21 +08:00
int actual_kernel = total_kernel;
std::shared_ptr<KernelWrap> kernel[total_kernel];
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
std::set<std::string> buildOption = mResource->mBuildOptions;
2024-09-12 12:57:57 +08:00
2024-07-04 11:53:45 +08:00
if(blockDim % 16 != 0){
2024-04-19 11:58:21 +08:00
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
2024-07-04 11:53:45 +08:00
} else if (mResource->mUseImage && mResource->mNumQuantBit == 4 && blockDim % 32 != 0) {
2024-05-11 19:17:02 +08:00
// Image weight-int4 use load32
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
2024-04-19 11:58:21 +08:00
}
std::string info = std::to_string(inputChannels) + "_" + std::to_string(outChannel);
2024-05-11 19:17:02 +08:00
if(mResource->mUseImage){
2024-09-12 12:57:57 +08:00
buildOption.emplace("-DUSE_IMAGE");
2024-05-11 19:17:02 +08:00
}
2024-09-12 12:57:57 +08:00
for (int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
auto option = buildOption;
option.emplace("-DTILE_N=" + std::to_string(itemC[knl_idx]));
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemv_conv1x1_buf", kernelName[knl_idx], option);
2024-04-19 11:58:21 +08:00
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
2024-09-12 12:57:57 +08:00
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outChannel, itemC[knl_idx])), static_cast<uint32_t>(global_y)};
2024-04-19 11:58:21 +08:00
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][0]);
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][1]);
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(input));
2024-05-11 19:17:02 +08:00
if(mResource->mUseImage){
ret |= kernel[knl_idx]->get().setArg(idx++, *mResource->mKernelImage.get());
}else{
ret |= kernel[knl_idx]->get().setArg(idx++, *mResource->mKernelBuffer.get());
}
2024-07-04 11:53:45 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
2024-04-19 11:58:21 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(output));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(outputChannelBlocks));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(inputChannelBlocks));
2024-07-04 11:53:45 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, inputChannels);
2024-09-12 12:57:57 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(global_y));
2024-07-04 11:53:45 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(blockNum));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(blockDim));
2024-05-11 19:17:02 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg gemv_conv1x1_buf Kernel Select");
2024-04-19 11:58:21 +08:00
std::pair<std::vector<uint32_t>, int> retTune;
2024-07-04 11:53:45 +08:00
retTune = localWS2DDefault(globalWorkSize[knl_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName[knl_idx] + info, kernel[knl_idx]);
2024-04-19 11:58:21 +08:00
if(min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
}
2023-12-27 17:26:44 +08:00
}
2024-04-19 11:58:21 +08:00
int min_index = min_cost.second;
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
2024-09-12 12:57:57 +08:00
buildOption.emplace("-DTILE_N=" + std::to_string(itemC[min_index]));
2024-05-11 19:17:02 +08:00
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemv_conv1x1_buf", kernelName[min_index], buildOption);
2023-12-27 17:26:44 +08:00
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
2024-05-11 19:17:02 +08:00
if(mResource->mUseImage){
ret |= unit.kernel->get().setArg(idx++, *mResource->mKernelImage.get());
}else{
ret |= unit.kernel->get().setArg(idx++, *mResource->mKernelBuffer.get());
}
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
2024-04-19 11:58:21 +08:00
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannelBlocks));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannelBlocks));
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannels));
2024-09-12 12:57:57 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(global_y));
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(blockNum));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(blockDim));
2024-05-11 19:17:02 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg gemv_conv1x1_buf");
2024-04-19 11:58:21 +08:00
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
2024-09-12 12:57:57 +08:00
return;
2023-12-27 17:26:44 +08:00
}
2024-09-12 12:57:57 +08:00
unsigned int ConvBufLowMemoryExecution::tuneGemmLowMemory(Tensor * input, Tensor * output, std::string option, bool onlyGetTime) {
2024-07-04 11:53:45 +08:00
mUnits.resize(3);
2024-08-24 15:46:21 +08:00
unsigned int total_time = 0;
2024-07-04 11:53:45 +08:00
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
2024-09-12 12:57:57 +08:00
int channelPack = 16;
if(mResource->mUseImage && mResource->mNumQuantBit == 4){
channelPack = 32;
}
2024-07-04 11:53:45 +08:00
const int outChannel = outputShape.at(3);
const int inputChannels = inputShape.at(3);
const int batch = outputShape.at(0);
const int width_height = outputShape.at(1) * outputShape.at(2);
2024-09-12 12:57:57 +08:00
const int inputChannelAlign = ROUND_UP(inputChannels, channelPack);
const int outputChannelAlign = ROUND_UP(outChannel, 4);
2024-07-04 11:53:45 +08:00
const int blockNum = mResource->mBlockSize;
const int blockDim = mResource->mInputChannel / mResource->mBlockSize;
2024-09-12 12:57:57 +08:00
int global_y = batch * width_height;
const int total_kernel = 3;
std::string kernelName[total_kernel] = {"gemm_b4_c1_buf", "gemm_b4_c2_buf", "gemm_b4_c4_buf"};
int itemC[total_kernel] = {1, 2, 4};
2024-07-04 11:53:45 +08:00
int actual_kernel = total_kernel;
std::shared_ptr<KernelWrap> kernel[total_kernel];
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
2024-08-24 15:46:21 +08:00
std::pair<unsigned int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
2024-07-04 11:53:45 +08:00
std::set<std::string> buildOption = mResource->mBuildOptions;
if(blockDim % 16 != 0){
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
} else if (mResource->mUseImage && mResource->mNumQuantBit == 4 && blockDim % 32 != 0) {
// Image weight-int4 use load32
buildOption.emplace("-DINPUT_CHANNEL_LEAVE");
}
2024-09-12 12:57:57 +08:00
buildOption.emplace(option);
if(mResource->mUseImage){
buildOption.emplace("-DUSE_IMAGE");
}
std::string info = std::to_string(inputChannels) + "_" + std::to_string(outChannel) + option;
2024-07-04 11:53:45 +08:00
// mResource->mInputChannel ROUND_UP to blockDim, avoid gemm overstep
2024-09-12 12:57:57 +08:00
mConvGemmInpTensor.reset(Tensor::createDevice<float>({ROUND_UP(batch, 4) * inputChannelAlign * width_height}));
2024-07-04 11:53:45 +08:00
mConvGemmOutTensor.reset(Tensor::createDevice<float>({ROUND_UP(batch, 4) * ROUND_UP(mResource->mOutputChannel, 4) * width_height}));
mOpenCLBackend->onAcquireBuffer(mConvGemmInpTensor.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mConvGemmOutTensor.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mConvGemmOutTensor.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mConvGemmInpTensor.get(), Backend::DYNAMIC);
// reshape n*c/4*4*hw -> n/4*hw*c*4
{
auto &unit = mUnits[0];
2024-09-12 12:57:57 +08:00
mGlobalWorkSize = {static_cast<uint32_t>(UP_DIV(inputChannelAlign, 4)), static_cast<uint32_t>(UP_DIV(global_y, 4))};
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm_conv1x1_buf", "reshape_nchw4_nhwc4", buildOption);
2024-07-04 11:53:45 +08:00
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(unit.kernel));
2024-08-24 15:46:21 +08:00
2024-07-04 11:53:45 +08:00
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(input));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mConvGemmInpTensor.get()));
2024-09-12 12:57:57 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(global_y));
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannels));
2024-09-12 12:57:57 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannelAlign));
2024-07-04 11:53:45 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg reshape_nc4_cn4");
2024-09-12 12:57:57 +08:00
std::pair<std::vector<uint32_t>, unsigned int> retTune = localWS2DDefault(mGlobalWorkSize, maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), "reshape_nchw4_nhwc4", unit.kernel);
2024-08-24 15:46:21 +08:00
total_time += retTune.second;
mLocalWorkSize = retTune.first;
2024-09-12 12:57:57 +08:00
if(false == onlyGetTime){
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
}
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
2024-07-04 11:53:45 +08:00
}
// gemm
{
auto &unit = mUnits[1];
2024-09-12 12:57:57 +08:00
for (int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm_conv1x1_buf", kernelName[knl_idx], buildOption);
2024-07-04 11:53:45 +08:00
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
2024-09-12 12:57:57 +08:00
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outChannel, itemC[knl_idx])), static_cast<uint32_t>(UP_DIV(global_y, 4))};
2024-07-04 11:53:45 +08:00
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][0]);
ret |= kernel[knl_idx]->get().setArg(idx++, globalWorkSize[knl_idx][1]);
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mConvGemmInpTensor.get()));
if(mResource->mUseImage){
ret |= kernel[knl_idx]->get().setArg(idx++, *mResource->mKernelImage.get());
}else{
ret |= kernel[knl_idx]->get().setArg(idx++, *mResource->mKernelBuffer.get());
}
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= kernel[knl_idx]->get().setArg(idx++, openCLBuffer(mConvGemmOutTensor.get()));
2024-09-12 12:57:57 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(UP_DIV(global_y, 4) * 4));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(outputChannelAlign));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(inputChannelAlign));
2024-07-04 11:53:45 +08:00
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(blockNum));
ret |= kernel[knl_idx]->get().setArg(idx++, static_cast<int>(blockDim));
MNN_CHECK_CL_SUCCESS(ret, "setArg gemv_conv1x1_buf Kernel Select");
2024-08-24 15:46:21 +08:00
std::pair<std::vector<uint32_t>, unsigned int> retTune;
2024-07-04 11:53:45 +08:00
retTune = localWS2DDefault(globalWorkSize[knl_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName[knl_idx] + info, kernel[knl_idx]);
2024-08-24 15:46:21 +08:00
if(min_cost.first > retTune.second) {
2024-07-04 11:53:45 +08:00
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
}
}
2024-08-24 15:46:21 +08:00
total_time += min_cost.first;
2024-07-04 11:53:45 +08:00
int min_index = min_cost.second;
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
2024-08-24 15:46:21 +08:00
2024-09-12 12:57:57 +08:00
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm_conv1x1_buf", kernelName[min_index], buildOption);
2024-07-04 11:53:45 +08:00
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mConvGemmInpTensor.get()));
if(mResource->mUseImage){
ret |= unit.kernel->get().setArg(idx++, *mResource->mKernelImage.get());
}else{
ret |= unit.kernel->get().setArg(idx++, *mResource->mKernelBuffer.get());
}
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->dequantScaleOffset.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mResource->mBias.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mConvGemmOutTensor.get()));
2024-09-12 12:57:57 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(UP_DIV(global_y, 4) * 4));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannelAlign));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(inputChannelAlign));
2024-07-04 11:53:45 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(blockNum));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(blockDim));
2024-09-12 12:57:57 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg gemm_conv1x1_buf");
if(false == onlyGetTime){
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
}
2024-07-04 11:53:45 +08:00
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
}
// reshape n/4*hw*c*4 -> n*c/4*4*hw
{
auto &unit = mUnits[2];
2024-09-12 12:57:57 +08:00
mGlobalWorkSize = {static_cast<uint32_t>(UP_DIV(mResource->mOutputChannel, 4)), static_cast<uint32_t>(UP_DIV(global_y, 4))};
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm_conv1x1_buf", "reshape_nhwc4_nchw4", buildOption);
2024-07-04 11:53:45 +08:00
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(unit.kernel));
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(mConvGemmOutTensor.get()));
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
2024-09-12 12:57:57 +08:00
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(global_y));
ret |= unit.kernel->get().setArg(idx++, static_cast<int>(outputChannelAlign));
2024-07-04 11:53:45 +08:00
MNN_CHECK_CL_SUCCESS(ret, "setArg reshape_cn4_nc4");
2024-09-12 12:57:57 +08:00
std::pair<std::vector<uint32_t>, unsigned int> retTune = localWS2DDefault(mGlobalWorkSize, maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), "reshape_nhwc4_nchw4", unit.kernel);
2024-08-24 15:46:21 +08:00
mLocalWorkSize = retTune.first;
total_time += retTune.second;
2024-09-12 12:57:57 +08:00
if(false == onlyGetTime){
mOpenCLBackend->recordKernel2d(unit.kernel, mGlobalWorkSize, mLocalWorkSize);
}
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1]};
2024-07-04 11:53:45 +08:00
}
2024-08-24 15:46:21 +08:00
return total_time;
2024-07-04 11:53:45 +08:00
}
2023-12-27 17:26:44 +08:00
ConvBufLowMemoryExecution::ConvBufLowMemoryExecution(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, const MNN::Op *op, Backend *backend)
2024-04-19 11:58:21 +08:00
: ConvBufCommonExecution(op->main_as_Convolution2D(), backend), CommonExecution(backend, op) {
2023-12-27 17:26:44 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("Start ConvBufLowMemoryExecution init !\n");
#endif
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
const auto *conv2dParams = op->main_as_Convolution2D();
const auto *conv2dCommonParams = conv2dParams->common();
2024-04-19 11:58:21 +08:00
mResource->mConv2dParams = conv2dParams;
mResource->mConv2dCommonParams = conv2dCommonParams;
2024-02-29 16:21:40 +08:00
mResource->mStrides = {conv2dCommonParams->strideY(), conv2dCommonParams->strideX()};
mResource->mDilations = {conv2dCommonParams->dilateY(), conv2dCommonParams->dilateX()};
2023-12-27 17:26:44 +08:00
auto padding = ConvolutionCommon::convolutionPad(inputs[0], outputs[0], conv2dCommonParams);
mPaddings[0] = padding.second;//padY
mPaddings[1] = padding.first;//padX
2024-02-29 16:21:40 +08:00
mResource->mKernelWidth = conv2dCommonParams->kernelX();
mResource->mKernelHeight = conv2dCommonParams->kernelY();
2024-04-19 11:58:21 +08:00
mResource->mOutputChannel = conv2dCommonParams->outputCount();
2023-12-27 17:26:44 +08:00
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
// set mDequantScale, mDequantOffset, mFilterDataPtr
// prepare mDequantScale mDequantOffset mFilterDataPtr
getInfoFromOpLowMemory(quanCommon);
//select opt conv method
2024-05-11 19:17:02 +08:00
if (mResource->mKernelHeight == mResource->mKernelWidth && mResource->mKernelHeight == 1 && mResource->mStrides[0] == 1 && mResource->mStrides[1] == 1 && conv2dCommonParams->padX() == 0 && conv2dCommonParams->padY() == 0 && conv2dCommonParams->dilateX() == 1 && conv2dCommonParams->dilateY() == 1) {
2024-04-19 11:58:21 +08:00
set1x1WeightLowMemory(4, 16, mFilterDataPtr, quanCommon);
mResource->mConv1x1Opt = true;
2023-12-27 17:26:44 +08:00
}else {
// set mFilter for not 1x1 case
setGeneralWeightLowMemory(mFilterDataPtr, quanCommon);
}
// Create Kernel
if (conv2dCommonParams->relu()) {
2024-04-19 11:58:21 +08:00
mResource->mBuildOptions.emplace("-DRELU");
2023-12-27 17:26:44 +08:00
} else if (conv2dCommonParams->relu6()) {
2024-04-19 11:58:21 +08:00
mResource->mBuildOptions.emplace("-DRELU6");
2023-12-27 17:26:44 +08:00
}
2024-07-04 11:53:45 +08:00
if (mResource->mNumQuantBit == 8) {
2023-12-27 17:26:44 +08:00
// int8 case
2024-04-19 11:58:21 +08:00
mResource->mBuildOptions.emplace("-DUSE_LOW_BIT_WEIGHT_INT8");
2024-07-04 11:53:45 +08:00
} else if (mResource->mNumQuantBit == 4){
2023-12-27 17:26:44 +08:00
// int4 case
2024-04-19 11:58:21 +08:00
mResource->mBuildOptions.emplace("-DUSE_LOW_BIT_WEIGHT_INT4");
2023-12-27 17:26:44 +08:00
} else {/* More types to be supported. */}
#ifdef LOG_VERBOSE
2024-07-04 11:53:45 +08:00
MNN_PRINT("end ConvBufLowMemoryExecution init !\n");
2023-12-27 17:26:44 +08:00
#endif
}
2024-04-19 11:58:21 +08:00
ConvBufLowMemoryExecution::ConvBufLowMemoryExecution(std::shared_ptr<ConvBufResource> resource, const MNN::Op* op, Backend *backend)
: ConvBufCommonExecution(backend), CommonExecution(backend, op) {
2023-12-27 17:26:44 +08:00
mResource = resource;
2024-02-29 16:21:40 +08:00
const auto *conv2dParams = op->main_as_Convolution2D();
const auto *conv2dCommonParams = conv2dParams->common();
2024-04-19 11:58:21 +08:00
mResource->mConv2dParams = conv2dParams;
mResource->mConv2dCommonParams = conv2dCommonParams;
2023-12-27 17:26:44 +08:00
}
ConvBufLowMemoryExecution::~ConvBufLowMemoryExecution() {
// Do nothing
}
bool ConvBufLowMemoryExecution::onClone(Backend* bn, const Op* op, Execution** dst) {
if (!mValid) {
return false;
}
if (nullptr == dst) {
return true;
}
*dst = new ConvBufLowMemoryExecution(mResource, op, bn);
return true;
}
2024-09-12 12:57:57 +08:00
ErrorCode ConvBufLowMemoryExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2023-12-27 17:26:44 +08:00
#ifdef LOG_VERBOSE
2024-07-04 11:53:45 +08:00
MNN_PRINT("Start ConvBufLowMemoryExecution onResize !\n");
2023-12-27 17:26:44 +08:00
#endif
2024-09-12 12:57:57 +08:00
auto runTime = mOpenCLBackend->getOpenCLRuntime();
mOpenCLBackend->startRecord(mRecording);
2024-04-19 11:58:21 +08:00
mUnits.resize(1);
2023-12-27 17:26:44 +08:00
auto input = inputs[0];
auto output = outputs[0];
2024-04-19 11:58:21 +08:00
auto padding = ConvolutionCommon::convolutionPad(input, output, mResource->mConv2dCommonParams);
2024-02-29 16:21:40 +08:00
mPaddings[0] = padding.second;//padY
mPaddings[1] = padding.first;//padX
// onclone default use conv1x1Opt, need reset
2024-07-04 11:53:45 +08:00
std::vector<int> outputShape = tensorShapeFormat(output);
2024-09-12 12:57:57 +08:00
const int batch = outputShape.at(0) * outputShape.at(1) * outputShape.at(2);
mUseFPWeight = false;
2024-04-19 11:58:21 +08:00
if (mResource->mConv1x1Opt) {
2024-09-12 12:57:57 +08:00
if(batch == 1){
tuneGemvLowMemory(input, output);
} else {
if(batch > 512){
useFPWeightGemmLowMemory(input, output);
mUseFPWeight = true;
}
else if(false == getPreParamInfo("ConvBufLowMemoryPreArrangeMode", &batchConvMode, runTime)){
if(tuneGemmLowMemory(input, output, "-DFORMAT_CNHW", true) < tuneGemmLowMemory(input, output, "", true)){
batchConvMode = 1;
} else{
batchConvMode = 2;
}
setPreParamInfo("ConvBufLowMemoryPreArrangeMode", batchConvMode, runTime);
} else {
std::string option = "";
if(1 == batchConvMode){
option = "-DFORMAT_CNHW";
}
tuneGemmLowMemory(input, output, option);
2024-08-24 15:46:21 +08:00
}
2024-07-04 11:53:45 +08:00
}
2023-12-27 17:26:44 +08:00
} else {
tuneGeneralCaseLowMemory(input, output);
}
2024-09-12 12:57:57 +08:00
for (auto &unit : mUnits) {
bool lws_null = true;
for (size_t i = 0; i < unit.globalWorkSize.dimensions(); ++i) {
unit.globalWorkSize.get()[i] = ROUND_UP(unit.globalWorkSize.get()[i], std::max((size_t)1, unit.localWorkSize.get()[i]));
if(unit.localWorkSize.get()[i] != 0) {
lws_null = false;
}
}
if(lws_null){
unit.localWorkSize = cl::NullRange;
}
}
mOpenCLBackend->endRecord(mRecording);
2023-12-27 17:26:44 +08:00
#ifdef LOG_VERBOSE
2024-07-04 11:53:45 +08:00
MNN_PRINT("end ConvBufLowMemoryExecution onResize !\n");
2023-12-27 17:26:44 +08:00
#endif
return NO_ERROR;
}
2024-09-12 12:57:57 +08:00
ErrorCode ConvBufLowMemoryExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("Start ConvBufLowMemoryExecution onExecute !\n");
#endif
auto runtime = mOpenCLBackend->getOpenCLRuntime();
#ifdef ENABLE_OPENCL_TIME_PROFILER
int idx = 0;
#else
if(mOpenCLBackend->isUseRecordQueue()){
mOpenCLBackend->addRecord(mRecording, mOpRecordUpdateInfo);
return NO_ERROR;
}
#endif
auto res = CL_SUCCESS;
if(mUseFPWeight){
// arrange input and weight
int i = 0;
for (; i < 2; ++i){
auto unit = mUnits[i];
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
res = runtime->commandQueue().enqueueNDRangeKernel(unit.kernel->get(),
cl::NullRange,
unit.globalWorkSize,
unit.localWorkSize,
nullptr,
&event);
runtime->pushEvent({EnumNameOpType(mOpType) + std::to_string(idx++), event});
#else
res = runtime->commandQueue().enqueueNDRangeKernel(unit.kernel->get(),
cl::NullRange,
unit.globalWorkSize,
unit.localWorkSize);
#endif
MNN_CHECK_CL_SUCCESS(res, EnumNameOpType(mOp->type()));
}
// call gemm execute
mStrassenComputor->onExecute();
// rearrange output
for (; i < mUnits.size(); ++i){
auto unit = mUnits[i];
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
res = runtime->commandQueue().enqueueNDRangeKernel(unit.kernel->get(),
cl::NullRange,
unit.globalWorkSize,
unit.localWorkSize,
nullptr,
&event);
runtime->pushEvent({EnumNameOpType(mOpType) + std::to_string(idx++), event});
#else
res = runtime->commandQueue().enqueueNDRangeKernel(unit.kernel->get(),
cl::NullRange,
unit.globalWorkSize,
unit.localWorkSize);
#endif
MNN_CHECK_CL_SUCCESS(res, EnumNameOpType(mOp->type()));
}
}else{
for (auto &unit : mUnits) {
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
res = runtime->commandQueue().enqueueNDRangeKernel(unit.kernel->get(),
cl::NullRange,
unit.globalWorkSize,
unit.localWorkSize,
nullptr,
&event);
runtime->pushEvent({EnumNameOpType(mOpType) + std::to_string(idx++), event});
#else
res = runtime->commandQueue().enqueueNDRangeKernel(unit.kernel->get(),
cl::NullRange,
unit.globalWorkSize,
unit.localWorkSize);
#endif
MNN_CHECK_CL_SUCCESS(res, EnumNameOpType(mOp->type()));
}
}
#ifdef LOG_VERBOSE
MNN_PRINT("end ConvBufLowMemoryExecution onExecute !\n");
#endif
return NO_ERROR;
}
2023-12-27 17:26:44 +08:00
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */
#endif /* MNN_LOW_MEMORY */