2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// ShapeBinaryOp.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2020-11-05 16:41:56 +08:00
|
|
|
#include "shape/SizeComputer.hpp"
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "core/Macro.h"
|
2020-02-26 17:13:46 +08:00
|
|
|
#include <vector>
|
2019-04-17 10:49:11 +08:00
|
|
|
namespace MNN {
|
|
|
|
class BinaryOpComputer : public SizeComputer {
|
|
|
|
public:
|
- dynamic computation graph (beta)
- add supports (/express)
- add tests
- add benchmarks with it (/benchmark/exprModels)
- Python
- MNN engine and tools were submitted to pip
- available on Windows/macOS/Linux
- Engine/Converter
- add supports for each op benchmarking
- refactor optimizer by separating steps
- CPU
- add supports for Conv3D, Pool3D, ELU, ReverseSequence
- fix ArgMax, Permute, Scale, BinaryOp, Slice, SliceTf
- OpenCL
- add half transform in CPU
- add broadcast supports for binary
- optimize Conv2D, Reshape, Eltwise, Gemm, etc.
- OpenGL
- add sub, real div supports for binary
- add supports for unary
- optimize Conv2D, Reshape
- Vulkan
- add max supports for eltwise
- Metal
- fix metallib missing problem
- Train/Quantization
- use express to refactor training codes
2019-09-26 21:02:07 +08:00
|
|
|
static bool outputBool(int operation) {
|
|
|
|
if (operation == BinaryOpOperation_GREATER_EQUAL) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (operation == BinaryOpOperation_GREATER) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (operation == BinaryOpOperation_LESS) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (operation == BinaryOpOperation_LESS_EQUAL) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (operation == BinaryOpOperation_EQUAL) {
|
|
|
|
return true;
|
|
|
|
}
|
2020-11-05 16:41:56 +08:00
|
|
|
if (operation == BinaryOpOperation_NOTEQUAL) {
|
|
|
|
return true;
|
|
|
|
}
|
- dynamic computation graph (beta)
- add supports (/express)
- add tests
- add benchmarks with it (/benchmark/exprModels)
- Python
- MNN engine and tools were submitted to pip
- available on Windows/macOS/Linux
- Engine/Converter
- add supports for each op benchmarking
- refactor optimizer by separating steps
- CPU
- add supports for Conv3D, Pool3D, ELU, ReverseSequence
- fix ArgMax, Permute, Scale, BinaryOp, Slice, SliceTf
- OpenCL
- add half transform in CPU
- add broadcast supports for binary
- optimize Conv2D, Reshape, Eltwise, Gemm, etc.
- OpenGL
- add sub, real div supports for binary
- add supports for unary
- optimize Conv2D, Reshape
- Vulkan
- add max supports for eltwise
- Metal
- fix metallib missing problem
- Train/Quantization
- use express to refactor training codes
2019-09-26 21:02:07 +08:00
|
|
|
return false;
|
|
|
|
}
|
2019-08-15 17:30:39 +08:00
|
|
|
virtual bool onComputeSize(const Op* op, const std::vector<Tensor*>& inputs,
|
2019-04-17 10:49:11 +08:00
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
|
|
MNN_ASSERT(2 == inputs.size());
|
|
|
|
MNN_ASSERT(1 == outputs.size());
|
2019-08-15 17:30:39 +08:00
|
|
|
// set output type & format
|
|
|
|
auto input0 = inputs[0], input1 = inputs[1], output = outputs[0];
|
|
|
|
auto &buffer = output->buffer();
|
2019-04-17 10:49:11 +08:00
|
|
|
const auto opType = op->main_as_BinaryOp()->opType();
|
- dynamic computation graph (beta)
- add supports (/express)
- add tests
- add benchmarks with it (/benchmark/exprModels)
- Python
- MNN engine and tools were submitted to pip
- available on Windows/macOS/Linux
- Engine/Converter
- add supports for each op benchmarking
- refactor optimizer by separating steps
- CPU
- add supports for Conv3D, Pool3D, ELU, ReverseSequence
- fix ArgMax, Permute, Scale, BinaryOp, Slice, SliceTf
- OpenCL
- add half transform in CPU
- add broadcast supports for binary
- optimize Conv2D, Reshape, Eltwise, Gemm, etc.
- OpenGL
- add sub, real div supports for binary
- add supports for unary
- optimize Conv2D, Reshape
- Vulkan
- add max supports for eltwise
- Metal
- fix metallib missing problem
- Train/Quantization
- use express to refactor training codes
2019-09-26 21:02:07 +08:00
|
|
|
if (outputBool(opType)) {
|
2019-08-15 17:30:39 +08:00
|
|
|
buffer.type = halide_type_of<int32_t>();
|
2019-04-17 10:49:11 +08:00
|
|
|
} else {
|
2019-08-15 17:30:39 +08:00
|
|
|
buffer.type = input0->getType();
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
2022-06-10 10:39:50 +08:00
|
|
|
|
2020-02-26 09:57:17 +08:00
|
|
|
if (input0->getType().code != input1->getType().code) {
|
2023-10-18 10:31:02 +08:00
|
|
|
#ifdef DEBUG
|
2022-06-10 10:39:50 +08:00
|
|
|
MNN_PRINT("Error for binary op: input0's type != input1's type, %d != %d, optype:%d, ", input0->getType().code, input1->getType().code, opType);
|
|
|
|
if (nullptr != op->name()) {
|
|
|
|
MNN_PRINT("op name: %s", op->name()->c_str());
|
|
|
|
}
|
|
|
|
MNN_PRINT("\n");
|
2023-10-18 10:31:02 +08:00
|
|
|
#endif
|
2020-02-26 09:57:17 +08:00
|
|
|
return false;
|
|
|
|
}
|
2021-04-08 15:34:23 +08:00
|
|
|
|
- dynamic computation graph (beta)
- add supports (/express)
- add tests
- add benchmarks with it (/benchmark/exprModels)
- Python
- MNN engine and tools were submitted to pip
- available on Windows/macOS/Linux
- Engine/Converter
- add supports for each op benchmarking
- refactor optimizer by separating steps
- CPU
- add supports for Conv3D, Pool3D, ELU, ReverseSequence
- fix ArgMax, Permute, Scale, BinaryOp, Slice, SliceTf
- OpenCL
- add half transform in CPU
- add broadcast supports for binary
- optimize Conv2D, Reshape, Eltwise, Gemm, etc.
- OpenGL
- add sub, real div supports for binary
- add supports for unary
- optimize Conv2D, Reshape
- Vulkan
- add max supports for eltwise
- Metal
- fix metallib missing problem
- Train/Quantization
- use express to refactor training codes
2019-09-26 21:02:07 +08:00
|
|
|
if (input0->dimensions() < input1->dimensions()) {
|
|
|
|
auto temp = input0;
|
|
|
|
input0 = input1;
|
|
|
|
input1 = temp;
|
|
|
|
}
|
2020-02-26 09:57:17 +08:00
|
|
|
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(input0)->dimensionFormat;
|
2021-04-08 15:34:23 +08:00
|
|
|
return SizeComputer::computeBroadCastDims(op, inputs, outputs);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_SHAPE(BinaryOpComputer, OpType_BinaryOp);
|
|
|
|
} // namespace MNN
|