| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  ShapeStridedSlice.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2019/01/10.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <algorithm>
 | 
					
						
							|  |  |  | #include <array>
 | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  | #include "shape/SizeComputer.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "core/Macro.h"
 | 
					
						
							|  |  |  | #include "core/TensorUtils.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | namespace MNN { | 
					
						
							|  |  |  | class StridedSliceComputer : public SizeComputer { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs, | 
					
						
							|  |  |  |                                const std::vector<Tensor *> &outputs) const override { | 
					
						
							|  |  |  |         MNN_ASSERT(4 == inputs.size()); | 
					
						
							|  |  |  |         MNN_ASSERT(1 == outputs.size()); | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  |          | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         Tensor *input            = inputs[0]; | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |         const int inputDim = input->buffer().dimensions; | 
					
						
							|  |  |  |         if (inputDim <= 0 || inputDim > MNN_MAX_TENSOR_DIM) { | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  |             return false; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         auto parameter = op->main_as_StridedSliceParam(); | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |         int32_t beginMask = parameter->beginMask(); | 
					
						
							|  |  |  |         int32_t endMask = parameter->endMask(); | 
					
						
							|  |  |  |         int32_t shrinkAxisMask = parameter->shrinkAxisMask(); | 
					
						
							|  |  |  |         int32_t ellipsisMask = parameter->ellipsisMask(); | 
					
						
							|  |  |  |         int32_t newAxisMask = parameter->newAxisMask(); | 
					
						
							|  |  |  |         if (ellipsisMask && (ellipsisMask & (ellipsisMask - 1))) { | 
					
						
							|  |  |  |             MNN_ERROR("only one non-zero bit is allowed in ellipsisMask\n"); | 
					
						
							|  |  |  |             return false; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         Tensor *begin   = inputs[1]; | 
					
						
							|  |  |  |         Tensor *end     = inputs[2]; | 
					
						
							|  |  |  |         Tensor *strided = inputs[3]; | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |         auto output    = outputs[0]; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         MNN_ASSERT(begin->buffer().dimensions == end->buffer().dimensions && | 
					
						
							|  |  |  |                    begin->buffer().dimensions == strided->buffer().dimensions); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |         int32_t inputShape[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |         int32_t begins[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |         int32_t ends[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |         int32_t strides[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |         int32_t beginMasks[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |         int32_t endMasks[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |         int32_t shrinkAxisMasks[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |         int32_t newAxisMasks[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |         int strideSize = begin->length(0); | 
					
						
							|  |  |  |         for (int i = 0; i < inputDim; i++) { | 
					
						
							|  |  |  |             inputShape[i] = input->length(i); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         for (int i = 0; i < strideSize; i++) { | 
					
						
							|  |  |  |             beginMasks[i] = beginMask & (1 << i); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         for (int i = 0; i < strideSize; i++) { | 
					
						
							|  |  |  |             endMasks[i] = endMask & (1 << i); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         for (int i = 0; i < strideSize; i++) { | 
					
						
							|  |  |  |             shrinkAxisMasks[i] = shrinkAxisMask & (1 << i); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         for (int i = 0; i < strideSize; i++) { | 
					
						
							|  |  |  |             newAxisMasks[i] = newAxisMask & (1 << i); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |         // deal ellipsis, expand strides info
 | 
					
						
							|  |  |  |         if (ellipsisMask > 0) { | 
					
						
							|  |  |  |             int32_t beginMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |             int32_t endMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |             int32_t shrinkAxisMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |             int32_t newAxisMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 }; | 
					
						
							|  |  |  |             // expand stride info
 | 
					
						
							|  |  |  |             int ellipsisPos = -1; | 
					
						
							|  |  |  |             for (int i = 0; i < strideSize; i++) { | 
					
						
							|  |  |  |                 int temp = ellipsisMask & (1 << i); | 
					
						
							|  |  |  |                 if (temp != 0) { | 
					
						
							|  |  |  |                     ellipsisPos = i; | 
					
						
							|  |  |  |                     break; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             MNN_ASSERT(ellipsisPos >= 0 && ellipsisPos < strideSize); | 
					
						
							|  |  |  |             /*
 | 
					
						
							|  |  |  |              Example: foo's dim is [2, 3, 4, 5, 6, 7], foo[0:2, :, 3:5, 3:6]: | 
					
						
							|  |  |  |                 1. strideSize = 4, inputDim = 6, ellipsis = 2(0010) | 
					
						
							|  |  |  |                 2. left part: 0:2, right part: 3:5, 3:6 | 
					
						
							|  |  |  |                 3. expand: foo[0:2, 0:3, 0:4, 3:5, 3:6] | 
					
						
							|  |  |  |              */ | 
					
						
							|  |  |  |             int ellpsisSize = inputDim - strideSize, strideIdx = 0; | 
					
						
							|  |  |  |             for (int i = 0; i < inputDim; i++) { | 
					
						
							|  |  |  |                 if (i == ellipsisPos) { | 
					
						
							|  |  |  |                     strideIdx++; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 if (i >= ellipsisPos && i <= ellipsisPos + ellpsisSize) { | 
					
						
							|  |  |  |                     begins[i] = 0; | 
					
						
							|  |  |  |                     ends[i] = inputShape[i]; | 
					
						
							|  |  |  |                     strides[i] = 1; | 
					
						
							|  |  |  |                     beginMasksTmp[i] = 0; | 
					
						
							|  |  |  |                     endMasksTmp[i] = 0; | 
					
						
							|  |  |  |                     shrinkAxisMasksTmp[i] = 0; | 
					
						
							|  |  |  |                 } else { | 
					
						
							|  |  |  |                     begins[i] = begin->host<int32_t>()[strideIdx]; | 
					
						
							|  |  |  |                     ends[i] = end->host<int32_t>()[strideIdx]; | 
					
						
							|  |  |  |                     strides[i] = strided->host<int32_t>()[strideIdx]; | 
					
						
							|  |  |  |                     beginMasksTmp[i] = beginMasks[strideIdx]; | 
					
						
							|  |  |  |                     endMasksTmp[i] = endMasks[strideIdx]; | 
					
						
							|  |  |  |                     shrinkAxisMasksTmp[i] = shrinkAxisMasks[strideIdx]; | 
					
						
							|  |  |  |                     newAxisMasksTmp[i] = newAxisMasks[strideIdx++]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             for (int i = 0; i < inputDim; i++) { | 
					
						
							|  |  |  |                 beginMasks[i] = beginMasksTmp[i]; | 
					
						
							|  |  |  |                 endMasks[i] = endMasksTmp[i]; | 
					
						
							|  |  |  |                 shrinkAxisMasks[i] = shrinkAxisMasksTmp[i]; | 
					
						
							|  |  |  |                 newAxisMasks[i] = newAxisMasksTmp[i]; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             strideSize = inputDim; | 
					
						
							|  |  |  |         } else { | 
					
						
							|  |  |  |             for (int i = 0; i < strideSize; i++) { | 
					
						
							|  |  |  |                 begins[i] = begin->host<int>()[i]; | 
					
						
							|  |  |  |                 ends[i] = end->host<int>()[i]; | 
					
						
							|  |  |  |                 strides[i] = strided->host<int>()[i]; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |         int32_t beginShape[MNN_MAX_TENSOR_DIM]; | 
					
						
							|  |  |  |         int32_t endShape[MNN_MAX_TENSOR_DIM]; | 
					
						
							|  |  |  |         int32_t stridedShape[MNN_MAX_TENSOR_DIM]; | 
					
						
							|  |  |  |         int32_t outputShape[MNN_MAX_TENSOR_DIM]; | 
					
						
							|  |  |  |         int32_t outputShapeShrinked[MNN_MAX_TENSOR_DIM]; | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |         int outputShapeSize = 0; | 
					
						
							|  |  |  |         int outputShapeShrinkSize = 0; | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |         int strideDealDims = 0; | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-07-09 23:11:23 +08:00
										 |  |  |         auto beginAndEndShapeLimit = [](int shape, int dimSize, bool exclusive) -> int { | 
					
						
							|  |  |  |             int maxShape = dimSize - 1, minShape = -dimSize; | 
					
						
							|  |  |  |             if (exclusive) { | 
					
						
							|  |  |  |                 ++maxShape; | 
					
						
							|  |  |  |                 --minShape; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             shape = (shape > maxShape ? maxShape : shape); | 
					
						
							|  |  |  |             shape = (shape < minShape ? minShape : shape); | 
					
						
							|  |  |  |             if (shape < 0) { | 
					
						
							|  |  |  |                 shape += dimSize; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             return shape; | 
					
						
							|  |  |  |         }; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-24 15:05:17 +08:00
										 |  |  |         int inputDimOffset = 0; | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |         for (int i = 0; i < strideSize; i++) { | 
					
						
							|  |  |  |             if (newAxisMasks[i] > 0) { | 
					
						
							|  |  |  |                 outputShape[outputShapeSize] = 1; | 
					
						
							|  |  |  |                 outputShapeSize++; | 
					
						
							|  |  |  |                 outputShapeShrinked[outputShapeShrinkSize] = 1; | 
					
						
							|  |  |  |                 outputShapeShrinkSize++; | 
					
						
							|  |  |  |                 continue; | 
					
						
							|  |  |  |             } | 
					
						
							| 
									
										
										
										
											2021-05-24 15:05:17 +08:00
										 |  |  |             auto inputDim = inputShape[inputDimOffset++]; | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |             strideDealDims++; | 
					
						
							|  |  |  |             if (beginMasks[i] > 0) { | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |                 beginShape[i] = 0; | 
					
						
							|  |  |  |             } else { | 
					
						
							| 
									
										
										
										
											2021-05-24 15:05:17 +08:00
										 |  |  |                 beginShape[i] = std::min(inputDim, begins[i]); | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |             } | 
					
						
							|  |  |  |             if (beginShape[i] < 0) { | 
					
						
							| 
									
										
										
										
											2021-06-15 21:49:46 +08:00
										 |  |  |                 auto temp = -beginShape[i]; | 
					
						
							|  |  |  |                 beginShape[i] = UP_DIV(temp, inputDim) * inputDim + beginShape[i]; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             } | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |             if (endMasks[i] > 0) { | 
					
						
							| 
									
										
										
										
											2021-05-24 15:05:17 +08:00
										 |  |  |                 endShape[i] = inputDim; | 
					
						
							| 
									
										
										
										
											2020-07-09 23:11:23 +08:00
										 |  |  |             } else { | 
					
						
							| 
									
										
										
										
											2021-05-24 15:05:17 +08:00
										 |  |  |                 endShape[i] = beginAndEndShapeLimit(ends[i], inputDim, true); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             } | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |             stridedShape[i] = shrinkAxisMasks[i] > 0 ? 1 : strides[i]; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |             if (endShape[i] < beginShape[i]) { | 
					
						
							|  |  |  |                 int t         = beginShape[i]; | 
					
						
							|  |  |  |                 beginShape[i] = endShape[i]; | 
					
						
							|  |  |  |                 endShape[i]   = t; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 MNN_ASSERT(stridedShape[i] != 0); | 
					
						
							|  |  |  |                 if (stridedShape[i] < 0) { | 
					
						
							|  |  |  |                     stridedShape[i] = -stridedShape[i]; | 
					
						
							|  |  |  |                 } else { | 
					
						
							|  |  |  |                     // MNN_ASSERT(false);  // TODO: should be the wrong case, but there is one in linfeng's faster
 | 
					
						
							|  |  |  |                     // rcnn face model
 | 
					
						
							|  |  |  |                     beginShape[i] = endShape[i]; // TODO: temp solution
 | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |             if (shrinkAxisMasks[i] == 0) { | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |                 int size = (endShape[i] - beginShape[i] - 1) / stridedShape[i] + 1; | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |                 outputShape[outputShapeSize] = size; | 
					
						
							|  |  |  |                 outputShapeSize++; | 
					
						
							|  |  |  |                 outputShapeShrinked[outputShapeShrinkSize] = size; | 
					
						
							|  |  |  |                 outputShapeShrinkSize++; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             } else { | 
					
						
							| 
									
										
										
										
											2021-05-24 15:05:17 +08:00
										 |  |  |                 outputShape[outputShapeSize] = std::min(1, inputDim); | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |                 outputShapeSize++; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-02-07 10:45:07 +08:00
										 |  |  |         int outputDimensionsWithoutRemain = strideDealDims; | 
					
						
							|  |  |  |         int dimensionRemained             = input->buffer().dimensions - strideDealDims; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         for (int i = 0; i < dimensionRemained; i++) { | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |             outputShapeShrinked[outputShapeShrinkSize] = input->buffer().dim[outputDimensionsWithoutRemain + i].extent; | 
					
						
							|  |  |  |             outputShapeShrinkSize++; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |         output->buffer().dimensions    = outputShapeShrinkSize; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         output->buffer().type          = input->buffer().type; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |         for (int i = 0; i < outputShapeShrinkSize; i++) { | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             output->buffer().dim[i].extent = outputShapeShrinked[i]; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2019-08-22 20:13:46 +08:00
										 |  |  |         TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         return true; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-08-22 20:13:46 +08:00
										 |  |  | REGISTER_SHAPE_INPUTS(StridedSliceComputer, OpType_StridedSlice, (std::vector<int>{1,2,3})); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | } // namespace MNN
 |