MNN/source/shape/ShapeBinaryOp.cpp

73 lines
2.3 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeBinaryOp.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
2020-11-05 16:41:56 +08:00
#include "shape/SizeComputer.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
2020-02-26 17:13:46 +08:00
#include <vector>
2019-04-17 10:49:11 +08:00
namespace MNN {
class BinaryOpComputer : public SizeComputer {
public:
static bool outputBool(int operation) {
if (operation == BinaryOpOperation_GREATER_EQUAL) {
return true;
}
if (operation == BinaryOpOperation_GREATER) {
return true;
}
if (operation == BinaryOpOperation_LESS) {
return true;
}
if (operation == BinaryOpOperation_LESS_EQUAL) {
return true;
}
if (operation == BinaryOpOperation_EQUAL) {
return true;
}
2020-11-05 16:41:56 +08:00
if (operation == BinaryOpOperation_NOTEQUAL) {
return true;
}
return false;
}
virtual bool onComputeSize(const Op* op, const std::vector<Tensor*>& inputs,
2019-04-17 10:49:11 +08:00
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
// set output type & format
auto input0 = inputs[0], input1 = inputs[1], output = outputs[0];
auto &buffer = output->buffer();
2019-04-17 10:49:11 +08:00
const auto opType = op->main_as_BinaryOp()->opType();
if (outputBool(opType)) {
buffer.type = halide_type_of<int32_t>();
2019-04-17 10:49:11 +08:00
} else {
buffer.type = input0->getType();
2019-04-17 10:49:11 +08:00
}
2022-06-10 10:39:50 +08:00
2020-02-26 09:57:17 +08:00
if (input0->getType().code != input1->getType().code) {
2023-10-18 10:31:02 +08:00
#ifdef DEBUG
2022-06-10 10:39:50 +08:00
MNN_PRINT("Error for binary op: input0's type != input1's type, %d != %d, optype:%d, ", input0->getType().code, input1->getType().code, opType);
if (nullptr != op->name()) {
MNN_PRINT("op name: %s", op->name()->c_str());
}
MNN_PRINT("\n");
2023-10-18 10:31:02 +08:00
#endif
2020-02-26 09:57:17 +08:00
return false;
}
2021-04-08 15:34:23 +08:00
if (input0->dimensions() < input1->dimensions()) {
auto temp = input0;
input0 = input1;
input1 = temp;
}
2020-02-26 09:57:17 +08:00
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(input0)->dimensionFormat;
2021-04-08 15:34:23 +08:00
return SizeComputer::computeBroadCastDims(op, inputs, outputs);
2019-04-17 10:49:11 +08:00
}
};
REGISTER_SHAPE(BinaryOpComputer, OpType_BinaryOp);
} // namespace MNN